Geometric Progressions Solutions Part 2 *************************************** 51. Let :math:`r` be the common ratio then :math:`b = ar^{n - 1}`. And we have :math:`p` as .. math:: p = a.ar.ar^2. ... .ar^{n - 1} .. math:: p = a^nr^{\frac{n(n - 1)}{2}} .. math:: p^2 = a^{2n}r^{n(n - 1)} .. math:: p^2 = (a^2r^{n - 1})^n .. math:: p^2 = (a.ar^{n - 1})^n .. math:: p^2 = (ab)^n 52. Let :math:`a_1` and :math:`a_2` be the first terms of the two G. P.s are :math:`r` be the common ratio. Let :math:`S_1` and :math:`S_2` be the sum to :math:`n` terms, we have .. math:: S_1 = \frac{a_1(1 - r^{n - 1})}{1 - r}~~~S_2 = \frac{a_2(1 - r^{n -1})}{1 -r} .. math:: \therefore \frac{S_1}{S_2} = \frac{a_1}{a_2} = \frac{a_1r^{n - 1}}{a_2r^{n - 1}} Thus, ratio of sums to :math:`n` terms is equal to the :math:`n\text{th}` terms. 53. Let :math:`a` be the first term and :math:`r` be the common ratio. Then, we have .. math:: S_1 = a + ar + ar^2 + ... + ar^{n - 1} .. math:: S_2 = a + ar + ar^2 + ... + ar^{n - 1} + ar^n + ar^{n + 1} + ... + ar^{2n - 1} .. math:: S_3 = a + ar + ar^2 + ... + ar^{2n - 1} + ar^{2n} + ... + ar^{3n - 1} .. math:: S_2 - S_1 = ar^n + ar^{n + 1} + ... + ar^{2n - 1} .. math:: S_2 - S_1 = \frac{ar^n(r^{n} - 1)}{r - 1} Similarly, .. math:: S_3 - S_2 = \frac{ar^{2n}(r^{n} - 1)}{r - 1} and .. math:: S_1 = \frac{a(r^n - 1)}{r - 1} Thus, :math:`(S_2 - S_1)^2 = S_1(S_3 - S_2)`. 54. We need to compute following: .. math:: S_1 + S_2 + ... + S_{2n - 1} From formula for sum of geometric series we have following: .. math:: = \frac{a(r - 1)}{r - 1} + \frac{a(r^2 - 1)}{r - 1} + ... + \frac{a(r^{2n - 1} - 1)}{r - 1} .. math:: = \frac{a}{r-1}\left[r + r^2 + ... + r^{2n - 1} - (2n - 1)\right] .. math:: = \frac{a}{r-1}\left[\frac{r(1 - r^{2n - 1})}{r - 1} - (2n - 1)\right] 55. Given, :math:`S_n = a.2^n - b` :math:`\therefore S_{n - 1} = a.2^{n - 1} - b`. Thus, :math:`t_n = S_n - S_{n - 1} = a2^{n - 1}`. Since the ratio of terms will be 2 as evident from :math:`t_n` the series is in G. P. 56. The sum would be :math:`S = 3.2 - 4 + 3.2^2 - 4 + ... + 3.2^{100} - 4`. From the formula for sum of a geometric series, we have, :math:`S = 6(2^{100} - 1) - 400` 57. :math:`t_n = 1 + 2 + 2^2 + ... + 2^n = 2^n - 1`. Sum of :math:`n` terms = :math:`S = 1 + 3 + 7 + 15 + ... + 2^n - 1` .. math:: S = 2^1 - 1 + 2^2 - 1 + 2^3 - 1 + 2^n - 1 .. math:: S = 2^{n + 1} - 2 - n 58. Clearly, the common ratio is :math:`3x`. Thus, from the formula for sum of infinite series we have sum as .. math:: S_{\infty} = \frac{1}{1 - 3x} 59. Common ratio is :math:`\frac{-1}{3}`, thus sum for infinite terms of the given series is: .. math:: S_{\infty} = \frac{1}{1 - (\frac{1}{3})} = \frac{9}{4} 60. There are two serieses having common ratios :math:`\frac{1}{5}` and :math:`\frac{1}{7}` having first terms as :math:`\frac{1}{5}` and :math:`\frac{1}{7}` respectively, as well. Thus, applying the formula, we have .. math:: S = \frac{\frac{1}{5}}{1 - \frac{1}{5}} + \frac{\frac{1}{7}}{1 - \frac{1}{7}} .. math:: S = \frac{1}{4} + \frac{1}{6} = \frac{5}{12} 61. Value of exponent is: :math:`S = \frac{1}{3} + \frac{1}{9} + \frac{1}{23} + ... ~~\text{to}~~ \infty` :math:`S = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}` Thus, value is :math:`9^\frac{1}{2} = 3`. 62. Sum within braces is .. math:: S = \frac{1}{1 - \frac{2x}{1 + x^2}} = \frac{1 + x^2}{(1 - x)^2} Thus, final sum is :math:`S = \frac{1}{(1 - x^2)}`. 63. :math:`L. H. S. = a^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... ~~\text{to}~~ \infty}` The value of exponent is :math:`\frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1`. Thus final value is :math:`a`. 64. :math:`0.\dot{5}\dot{4} = 0.54 + 0.0054 + 0.000054 + ... ~~\text{to}~~ \infty` Thus, we have .. math:: 0.\dot{5}\dot{4} = \frac{54}{100} + \frac{54}{10000} + \frac{54}{1000000} + ... .. math:: = \frac{54}{100}.\frac{1}{1 - \frac{1}{100}} = \frac{54}{99} = \frac{6}{11} 65. We have .. math:: .\dot{6} = .6 + .06 + .006 + ... ~~\text{to}~~ \infty .. math:: = \frac{6}{10} + \frac{6}{100} + \frac{6}{1000} + ... .. math:: = \frac{6}{10}.\frac{1}{1 - 10} = \frac{6}{9} = \frac{2}{3}. 66. Given, :math:`S_{\infty} = 32` and :math:`a + ar = 24`, where, :math:`a` is the first term and :math:`r` is the common ratio. Now, :math:`S_{\infty} = \frac{a}{1 - r} \because |r| < 1.` Solving these two we have, .. math:: a = 32(1 - r) ~~\text{and}~~ a(1 + r) = 24 Substituting first in second we have .. math:: 32(1 - r^2) = 24 ~~\text{i.e.}~~ r^2 = \frac{1}{4} \Rightarrow r = \pm\frac{1}{2} Thus, :math:`a = 48` or :math:`a = 16`. Thus, we can have our desired series as :math:`16, 8, 4, 2, ...` or :math:`48, -24, 12, -6`. 67. Let :math:`a` be the first term and :math:`r` be the common ratio. Then, we have .. math:: \frac{a}{1 - r} = 4 ~~\text{and}~~ \frac{a^2}{1 - r^2} = \frac{16}{3} Substituting first ins second, we have .. math:: \frac{16(1 - r)^2}{1 - r^2} = \frac{16}{3} \Rightarrow \frac{1 - r}{1 + r} = \frac{1}{3} Solving, we have :math:`r = \frac{1}{2}` and then :math:`a = 2`. Thus, we have our series as :math:`2, 1, \frac{1}{2}, \frac{1}{4}, ...`. 68. Let :math:`a` be the first term and :math:`r` be the common ratio. Then, we have .. math:: S = 1 + a + ar + ar^2 + ... ~~\text{to}~~ \infty Let us consider a term :math:`t_n = ar^{n - 1}`. Then, sum of succeeding terms is :math:`S = \frac{ar^n}{1 - r}`. Equating these we have .. math:: \frac{ar^n}{1 - r} = ar^n - 1 .. math:: \Rightarrow \frac{r}{1 - r} = 1 \Rightarrow r = \frac{1}{2}. Similarly we can prove for :math:`>` or :math:`<`. 69. Given, :math:`y = 1 + x + x^2 + ...` From the formula for infinite G. P. .. math:: y = \frac{1}{1 - x} \Rightarrow 1 - x = \frac{1}{y} \Rightarrow x = \frac{y - 1}{y} 70. :math:`c = ar^2` and :math:`b = ar`. Thus, we have :math:`c > 4b - 3a = ar^2 > 4ar - 3a` :math:`\Rightarrow r^2 > 4r - 3 \Rightarrow (r - 1)(r - 3) > 0` Thus, :math:`r > 3` or :math:`r < 1`. 71. :math:`1 + 2x + 4x^2 + ... + 32x^5 = \frac{1 - k^6}{1 - k}` :math:`\frac{1 - (2x)^6}{1 - 2x} = \frac{1 - k^6}{1 - k}` :math:`\therefore k = 2x \Rightarrow \frac{k}{x} = 2.` 72. Simplifying the given relation, we have .. math:: (b^4 - 2b^2ac + a^2c^2) + (c^4 - 2c^2bd + b^2d^2) + (a^2d^2 - 2abcd - b^2c^2) \le 0 .. math:: \Rightarrow (b^2 - ac)^2 + (c^2 - bd)^2 + (ad - bc)^2 \le 0 This is only possible if and only if, :math:`b^2 = ac, c^2 = bd, ac = bd` i.e. :math:`\frac{b}{a} = \frac{c}{b} = \frac{d}{c}`. Thus, :math:`a, b, c, d` are in G. P. 73. On simplification, we have .. math:: \sum (a_1^2a_3^2 + a_2^4 - 2a_2^2a_1a_3) \le 0 or :math:`\sum (a_1a_3 - a_2^2)^2 \le 0`. In L. H. S. every bracket being square of real number is +ve and hence their sum cannot be less than zero. It will be zero if each term is zero. :math:`\therefore a_1a_3 = a_2^2` or :math:`a_1, a_2, a_3` are in G. P. Similarly, others are also in G. P. Hence proved. 74. :math:`\alpha, beta, \gamma, \delta` being in increasing G. P., they may be taken as :math:`k, kr, kr^2, kr^3`, where :math:`r > 1`. Sum of the roots of the equations .. math:: S_1 = k(1 + r) = 3, S_2 = kr^2(1 + r) = 12 Substituting :math:`S_1` in :math:`S_2`, we have :math:`3r^2 = 12` or :math:`r = 2 \therefore k = 1`. Product of the roots :math:`P_1 = \alpha\beta = k^2r = a, P_2 = \gamma\delta = k^2r^5 = b` Putting for :math:`k` and :math:`r`, we have :math:`a = 2, b = 32`. 75. Given :math:`d = 2, r = \frac{1}{2}.` If there be odd number of terms then mid-term = :math:`\frac{1}{2}(odd + 1)`. :math:`T_{2n + 1}` is the mid-term of sequence of :math:`(4n + 1)` odd terms. :math:`a + 2nd = a + 4n`. This middle term is the last term of A. P. and first term of following G. P. each of :math:`(2n + 1)` terms with this term being common to both. Let :math:`T_{n+1}` and :math:`t_{n + 1}` are mid terms of A. P. and G. P. :math:`T_{n + 1} = a + nd = a + 2n` :math:`t_{n + 1} = AR^n = T_{2n + 1}\left(\frac{1}{2}\right)^n = (a + 4n)\left(\frac{1}{2}\right)^n` Given, :math:`T_{n + 1} = t_{n + 1}` :math:`a + 2n = (a + 4n)\frac{1}{2^n}` .. math:: \therefore a = \frac{4n - n.2^{n + 1}}{2^n - 1} Hence, mid term is .. math:: a + 4n = \frac{n.2^{n + 1}}{2^n - 1} 76. :math:`S_n = 3 - \frac{3^{n + 1}}{4^{2n}}`. Putting :math:`n = 1, 2` we have .. math:: T_1 = S_1 = 3 - \frac{9}{16} = \frac{39}{16} .. math:: S_2 = 3 - \frac{27}{256} = T_1 + T_2 .. math:: \therefore T_2 = \frac{117}{256} .. math:: r = \frac{T_2}{T_1} = \frac{3}{16} 77. Let three number in G. P. are :math:`ar, a, \frac{a}{r}` then given that :math:`ar, 2a, \frac{a}{r}` in A. P. .. math:: \therefore 2(2a) = a\left(r + \frac{1}{r}\right) or :math:`r^2 - 4r + 1 = 0` or :math:`r = 2 \pm \sqrt{3}` Since, it is an increasing G. P. therefore :math:`r = 2 + \sqrt{3}`. 78. Given, :math:`(4x + 1)^2 = (2x + 1)(8x + 1)` :math:`2x = 0 \Rightarrow x = 0` But :math:`x = 0` makes :math:`f(x), f(2x)` and :math:`f(4x)` equal which is G. P. of :math:`r = 1`. 79. Let :math:`r` be the common ratio, then, we have :math:`a + ar + ar^2 = x. ar` or :math:`r^2 + r(1 - x) + 1 = 0`, :math:`r` is real. :math:`Discriminant > 0` i.e. :math:`(1 - x)^2 - 4 > 0` or :math:`(x + 1)(x - 3) > 0` :math:`\Rightarrow x < -1 ~~\text{or}~~ x > 3`. 80. Let the numbers be :math:`a` and :math:`b` then :math:`A = \frac{a + b}{2}` or :math:`a + b = 2A` Also, :math:`G = \sqrt{ab} \Rightarrow G^2 = ab` Thus, :math:`a` and :math:`b` are roots of :math:`t^2 - 2At + G^2 = 0` .. math:: t = \frac{2A \pm \sqrt{4A^2 - 4G^2}}{2} = A \pm \sqrt{A^2 - G^2} 81. Let :math:`A` be the A. M. and :math:`G` be the G. M., then, we have .. math:: \frac{A}{G} = \frac{m}{n} .. math:: \frac{A}{m} = \frac{G}{n} = k :math:`\therefore a + b = 2mk, ab = n^2k^2` Hence, :math:`a, b` are roots of :math:`x^2 - 2mkx + k^2n^2 = 0` :math:`\therefore x = 2mk \pm 2k\sqrt{m^2 - n^2}` :math:`\therefore a:b = m + \sqrt{m^2 - n^2}: m - \sqrt{m^2 - n^2}`. 82. :math:`x = \frac{1}{1 - a}, y = \frac{1}{1 - b}, z = \frac{1}{1 - c}` :math:`\therefore \frac{1}{x} = 1 - a, \frac{1}{y} = 1 - b, \frac{1}{z} = 1 - c` Since :math:`a, b, c` are in A. P., therefore :math:`\frac{1}{x}, \frac{1}{y}, \frac{1}{z}` are in A. P. 83. For :math:`p, a =1, r = -\tan^2x` .. math:: \therefore p = \frac{a}{1 - r} = \frac{1}{1 + \tan^2x} = \cos^2x For :math:`q, a =1, r = -\cot^2y` .. math:: \therefore q = \frac{a}{1 - r} = \frac{1}{1 + \cot^2y} = \sin^2y .. math:: S = \frac{1}{1 - \tan^2x\cot^2y} .. math:: = \frac{1}{1 - \frac{1 - \cos^2x}{\cos^2x}\frac{1 - \sin^2y}{\sin^2y}} .. math:: = \frac{pq}{p + q - 1} = \frac{1}{\frac{1}{p} + \frac{1}{q} - \frac{1}{pq}} 84. Let side of outermost equilateral triangle is :math:`a`, then its area is :math:`\frac{\sqrt{3}}{4}a^2`. The sides of subsequent internal triangles will be :math:`\frac{a}{2}, \frac{a}{4}, \frac{a}{8}, ...` Therefore, total area is :math:`\frac{\sqrt{3}}{4}a^2\left(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ... \right)` .. math:: = \frac{\sqrt{3}}{4}a^2. \frac{1}{1 - \frac{1}{4}} = 1 85. :math:`\cos^2x = |\cos^2x|` Sum of infinite series is :math:`S = \frac{1}{1 - |\cos x|}` where :math:`|\cos x| < 1`. :math:`E = e^{S\log_e 4} = 4^S` :math:`E` satisfied theq equation :math:`t^2 - 20t + 64 = 0 \therefore t = 16, 4` :math:`4^S = 4^1` or :math:`4^2` or :math:`S = 1` or :math:`2` or :math:`\frac{1}{1 - |\cos x|} = 1 ~~\text{or}~~ 2` or :math:`1 - |\cos x| = 1 ~~\text{or}~~\frac{1}{2}` :math:`\Rightarrow |\cos x| = 0 ~~\text{or}~~ \frac{1}{2}` :math:`\therefore \cos x = 0 ~~\text{or}~~ \pm\frac{1}{2}` :math:`x = \frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}`. 86. The given equation may be written as :math:`8^{1 + |\cos x| + |\cos^2x| + .. ~~\text{to}~~ \infty} = 8^2` :math:`1 + |\cos x| + |\cos^2x| + .. ~~\text{to}~~ \infty = 2` To sum the G. P., we must observe that for :math:`-\pi < x < \pi, x \ne 0`, we have :math:`|\cos x| < 1`. Hence :math:`\frac{1}{1 - |\cos x|} = 2` or :math:`1 - |\cos x| = \frac{1}{2}` by :math:`S_{\infty}` for G. P. or :math:`|\cos x| = 1/2` i.e. :math:`\cos x = \pm 1/2`. 87. :math:`T_n = (1 + a + a^2 + ... + a^{n - 1})b^{n - 1}` .. math:: = \frac{1 - a^n}{1 - a}.b^{n - 1} .. math:: = \frac{1}{1 - a}[b^{n - 1} - a(ab)^{n - 1}] Putting :math:`n = 1, 2, 3, ..., \infty` and adding .. math:: S_{\infty} = \frac{1}{1 - a}[(1 + b + b^2 + ... \infty) + a(1 + ab + a^2b^2 + ... \infty)] .. math:: S_{\infty} = \frac{1}{1 - a}\left[\frac{1}{1 - b} - a.\frac{1}{1 - ab}\right] .. math:: S_{\infty} = \frac{1}{(1 - b)(1 - ba)} 88. :math:`S_{\infty} = \frac{\sin^2x}{1 - \sin^2x} = \tan^2x` .. math:: L. H. S. = e^{\tan^2x \log 2} = 2^{\tan^2x} and the roots of the equation :math:`x^2 - 9x + 8 = 0` are :math:`1` and :math:`8`. :math:`2^{\tan^2x} = 1 = 2^0, 2^{\tan^2x} = 8 = 2^3` :math:`\therefore \tan^2x = 0, \tan^2x = 3` :math:`\therefore \tan x = 0, \tan x = \pm \sqrt{3}` :math:`\therefore x = \frac{\pi}{3}` is the only value of :math:`x` satisfying :math:`0 < x < \frac{\pi}{2}` :math:`\therefore \frac{\cos x}{\cos x + \sin x} = \frac{1}{1 + \tan x} = \frac{1}{1 + \sqrt{3}}` 89. :math:`S_{\lambda = 1 + \frac{1}{\lambda} + \frac{1}{\lambda^2} + ... \infty} = \frac{\lambda}{\lambda - 1}` .. math:: \therefore \sum_{\lambda = 1}^n (\lambda - 1)S_{\lambda} = \sum_{\lambda}^n \lambda = \frac{n(n + 1)}{2} 90. :math:`\frac{T_2}{T_1} = \frac{T_3}{T_2} \Rightarrow 2^{(b - a).x} = 2^{(c - b)x}` :math:`\Rightarrow (b - a)x = (c - a)x \Rightarrow b - a = c - a \forall x, x\ne 0` Above is true as :math:`a, b, c` are in A. P. 91. Writing, :math:`a + be^x = 2a - (a - be^x)`, we have .. math:: \frac{2a}{a - be^x} - 1 = \frac{2b}{b - ce^x} - 1 = \frac{2c}{c - de^x} - 1 .. math:: \Rightarrow \frac{a - be^x}{a} = \frac{b - ce^x}{b} = \frac{c - de^x}{c} .. math:: \Rightarrow 1 - \frac{b}{a}e^x = 1 - \frac{c}{b}e^x = 1 - \frac{d}{c}e^x .. math:: \frac{b}{a} = \frac{c}{b} = \frac{d}{c} Thus, :math:`a, b, c` are in G. P. 92. Since, :math:`x, y, z` are in G. P. :math:`y^2 = xz` and :math:`2\tan^{-1}x = \tan^{-1}y + \tan^{-1}z` .. math:: \frac{2y}{1 - y^2} = \frac{x + z}{1 - xz} \Rightarrow 2y = x + z .. math:: 4y^2 = (x + z)^2 \Rightarrow 4zx = (x + z)^2 \Rightarrow (x - z)^2 = 0 \Rightarrow x = z .. math:: \therefore x = y = z 93. Given, :math:`b - a = c - b` and :math:`(c - b)^2 = a(b - a)` or :math:`(b - a)^2 = a(b - a) \Rightarrow b = 2a` but :math:`c = 2b - a = 3a`. :math:`\therefore a : b : c = 1 : 2 : 3` 94. :math:`\log \frac{a}{2b}, \log \frac{2b}{3c}, \log \frac{3c}{a}` are in A. P. :math:`\therefore 2\log \frac{2b}{3c} = \log \frac{a}{2b} + \log \frac{3c}{a}` :math:`\log\left(\frac{2b}{3c}\right)^2 = \log\left(\frac{a}{2b}.\frac{3c}{a}\right)` :math:`\Rightarrow \frac{4b^2}{9c^2} = \frac{3c}{2b}` or :math:`8b^3 = 27c^3` :math:`\therefore 2b = 3c` Also, :math:`a, b, c` are in G. P. :math:`\therefore b^2 = ac` :math:`\frac{9c^2}{4} = ac` :math:`\therefore a = \frac{9}{4}c` Thus, sides are :math:`\frac{9}{4}c, \frac{6}{4}c` and :math:`c`. Clearly, :math:`a` is greatest side so that :math:`\angle A` is greatest. :math:`\cos A = \frac{b^2 + c^2 - a^2}{2bc} = -\frac{29}{48} < 0` Therefore, :math:`\angle A` is obstuse so the triangle is obtuse angled triangle. 95. Given, .. math:: Area = \begin{vmatrix} a & c & e & a \\ d & e & f & b \end{vmatrix} Substituting the values and evaluating the determinant will yield the desired result. 96. :math:`a^t = \log_t a . \log_b t = \log_b a` :math:`t = \log_a(\log_b a)`