38. Geometric Progressions Solutions Part 2#
Let \(r\) be the common ratio then \(b = ar^{n - 1}\). And we have \(p\) as
\[p = a.ar.ar^2. ... .ar^{n - 1} \]\[p = a^nr^{\frac{n(n - 1)}{2}} \]\[p^2 = a^{2n}r^{n(n - 1)} \]\[p^2 = (a^2r^{n - 1})^n \]\[p^2 = (a.ar^{n - 1})^n \]\[p^2 = (ab)^n \]Let \(a_1\) and \(a_2\) be the first terms of the two G. P.s are \(r\) be the common ratio. Let \(S_1\) and \(S_2\) be the sum to \(n\) terms, we have
\[S_1 = \frac{a_1(1 - r^{n - 1})}{1 - r}~~~S_2 = \frac{a_2(1 - r^{n -1})}{1 -r} \]\[\therefore \frac{S_1}{S_2} = \frac{a_1}{a_2} = \frac{a_1r^{n - 1}}{a_2r^{n - 1}} \]Thus, ratio of sums to \(n\) terms is equal to the \(n\text{th}\) terms.
Let \(a\) be the first term and \(r\) be the common ratio. Then, we have
\[S_1 = a + ar + ar^2 + ... + ar^{n - 1}\]\[S_2 = a + ar + ar^2 + ... + ar^{n - 1} + ar^n + ar^{n + 1} + ... + ar^{2n - 1}\]\[S_3 = a + ar + ar^2 + ... + ar^{2n - 1} + ar^{2n} + ... + ar^{3n - 1}\]\[S_2 - S_1 = ar^n + ar^{n + 1} + ... + ar^{2n - 1}\]\[S_2 - S_1 = \frac{ar^n(r^{n} - 1)}{r - 1}\]Similarly,
\[S_3 - S_2 = \frac{ar^{2n}(r^{n} - 1)}{r - 1}\]and
\[S_1 = \frac{a(r^n - 1)}{r - 1}\]Thus, \((S_2 - S_1)^2 = S_1(S_3 - S_2)\).
We need to compute following:
\[S_1 + S_2 + ... + S_{2n - 1}\]From formula for sum of geometric series we have following:
\[= \frac{a(r - 1)}{r - 1} + \frac{a(r^2 - 1)}{r - 1} + ... + \frac{a(r^{2n - 1} - 1)}{r - 1}\]\[= \frac{a}{r-1}\left[r + r^2 + ... + r^{2n - 1} - (2n - 1)\right]\]\[= \frac{a}{r-1}\left[\frac{r(1 - r^{2n - 1})}{r - 1} - (2n - 1)\right]\]Given, \(S_n = a.2^n - b\) \(\therefore S_{n - 1} = a.2^{n - 1} - b\). Thus, \(t_n = S_n - S_{n - 1} = a2^{n - 1}\). Since the ratio of terms will be 2 as evident from \(t_n\) the series is in G. P.
The sum would be \(S = 3.2 - 4 + 3.2^2 - 4 + ... + 3.2^{100} - 4\).
From the formula for sum of a geometric series, we have,
\(S = 6(2^{100} - 1) - 400\)
\(t_n = 1 + 2 + 2^2 + ... + 2^n = 2^n - 1\).
Sum of \(n\) terms = \(S = 1 + 3 + 7 + 15 + ... + 2^n - 1\)
\[S = 2^1 - 1 + 2^2 - 1 + 2^3 - 1 + 2^n - 1\]\[S = 2^{n + 1} - 2 - n\]Clearly, the common ratio is \(3x\). Thus, from the formula for sum of infinite series we have sum as
\[S_{\infty} = \frac{1}{1 - 3x}\]Common ratio is \(\frac{-1}{3}\), thus sum for infinite terms of the given series is:
\[S_{\infty} = \frac{1}{1 - (\frac{1}{3})} = \frac{9}{4}\]There are two serieses having common ratios \(\frac{1}{5}\) and \(\frac{1}{7}\) having first terms as \(\frac{1}{5}\) and \(\frac{1}{7}\) respectively, as well.
Thus, applying the formula, we have
\[S = \frac{\frac{1}{5}}{1 - \frac{1}{5}} + \frac{\frac{1}{7}}{1 - \frac{1}{7}}\]\[S = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}\]Value of exponent is: \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{23} + ... ~~\text{to}~~ \infty\)
\(S = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}\)
Thus, value is \(9^\frac{1}{2} = 3\).
Sum within braces is
\[S = \frac{1}{1 - \frac{2x}{1 + x^2}} = \frac{1 + x^2}{(1 - x)^2}\]Thus, final sum is \(S = \frac{1}{(1 - x^2)}\).
\(L. H. S. = a^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... ~~\text{to}~~ \infty}\)
The value of exponent is \(\frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1\). Thus final value is \(a\).
\(0.\dot{5}\dot{4} = 0.54 + 0.0054 + 0.000054 + ... ~~\text{to}~~ \infty\)
Thus, we have
\[0.\dot{5}\dot{4} = \frac{54}{100} + \frac{54}{10000} + \frac{54}{1000000} + ...\]\[= \frac{54}{100}.\frac{1}{1 - \frac{1}{100}} = \frac{54}{99} = \frac{6}{11}\]We have
\[.\dot{6} = .6 + .06 + .006 + ... ~~\text{to}~~ \infty\]\[= \frac{6}{10} + \frac{6}{100} + \frac{6}{1000} + ...\]\[= \frac{6}{10}.\frac{1}{1 - 10} = \frac{6}{9} = \frac{2}{3}.\]Given, \(S_{\infty} = 32\) and \(a + ar = 24\), where, \(a\) is the first term and \(r\) is the common ratio.
Now, \(S_{\infty} = \frac{a}{1 - r} \because |r| < 1.\)
Solving these two we have,
\[a = 32(1 - r) ~~\text{and}~~ a(1 + r) = 24\]Substituting first in second we have
\[32(1 - r^2) = 24 ~~\text{i.e.}~~ r^2 = \frac{1}{4} \Rightarrow r = \pm\frac{1}{2}\]Thus, \(a = 48\) or \(a = 16\). Thus, we can have our desired series as \(16, 8, 4, 2, ...\) or \(48, -24, 12, -6\).
Let \(a\) be the first term and \(r\) be the common ratio. Then, we have
\[\frac{a}{1 - r} = 4 ~~\text{and}~~ \frac{a^2}{1 - r^2} = \frac{16}{3}\]Substituting first ins second, we have
\[\frac{16(1 - r)^2}{1 - r^2} = \frac{16}{3} \Rightarrow \frac{1 - r}{1 + r} = \frac{1}{3}\]Solving, we have \(r = \frac{1}{2}\) and then \(a = 2\). Thus, we have our series as \(2, 1, \frac{1}{2}, \frac{1}{4}, ...\).
Let \(a\) be the first term and \(r\) be the common ratio. Then, we have
\[S = 1 + a + ar + ar^2 + ... ~~\text{to}~~ \infty\]Let us consider a term \(t_n = ar^{n - 1}\). Then, sum of succeeding terms is
\(S = \frac{ar^n}{1 - r}\). Equating these we have
\[\frac{ar^n}{1 - r} = ar^n - 1\]\[\Rightarrow \frac{r}{1 - r} = 1 \Rightarrow r = \frac{1}{2}.\]Similarly we can prove for \(>\) or \(<\).
Given, \(y = 1 + x + x^2 + ...\)
From the formula for infinite G. P.
\[y = \frac{1}{1 - x} \Rightarrow 1 - x = \frac{1}{y} \Rightarrow x = \frac{y - 1}{y}\]\(c = ar^2\) and \(b = ar\). Thus, we have \(c > 4b - 3a = ar^2 > 4ar - 3a\)
\(\Rightarrow r^2 > 4r - 3 \Rightarrow (r - 1)(r - 3) > 0\)
Thus, \(r > 3\) or \(r < 1\).
\(1 + 2x + 4x^2 + ... + 32x^5 = \frac{1 - k^6}{1 - k}\)
\(\frac{1 - (2x)^6}{1 - 2x} = \frac{1 - k^6}{1 - k}\)
\(\therefore k = 2x \Rightarrow \frac{k}{x} = 2.\)
Simplifying the given relation, we have
\[(b^4 - 2b^2ac + a^2c^2) + (c^4 - 2c^2bd + b^2d^2) + (a^2d^2 - 2abcd - b^2c^2) \le 0\]\[\Rightarrow (b^2 - ac)^2 + (c^2 - bd)^2 + (ad - bc)^2 \le 0\]This is only possible if and only if, \(b^2 = ac, c^2 = bd, ac = bd\) i.e. \(\frac{b}{a} = \frac{c}{b} = \frac{d}{c}\). Thus, \(a, b, c, d\) are in G. P.
On simplification, we have
\[\sum (a_1^2a_3^2 + a_2^4 - 2a_2^2a_1a_3) \le 0\]or \(\sum (a_1a_3 - a_2^2)^2 \le 0\).
In L. H. S. every bracket being square of real number is +ve and hence their sum cannot be less than zero. It will be zero if each term is zero.
\(\therefore a_1a_3 = a_2^2\) or \(a_1, a_2, a_3\) are in G. P. Similarly, others are also in G. P.
Hence proved.
\(\alpha, beta, \gamma, \delta\) being in increasing G. P., they may be taken as \(k, kr, kr^2, kr^3\), where \(r > 1\).
Sum of the roots of the equations
\[S_1 = k(1 + r) = 3, S_2 = kr^2(1 + r) = 12\]Substituting \(S_1\) in \(S_2\), we have
\(3r^2 = 12\) or \(r = 2 \therefore k = 1\).
Product of the roots
\(P_1 = \alpha\beta = k^2r = a, P_2 = \gamma\delta = k^2r^5 = b\)
Putting for \(k\) and \(r\), we have
\(a = 2, b = 32\).
Given \(d = 2, r = \frac{1}{2}.\)
If there be odd number of terms then mid-term = \(\frac{1}{2}(odd + 1)\).
\(T_{2n + 1}\) is the mid-term of sequence of \((4n + 1)\) odd terms.
\(a + 2nd = a + 4n\).
This middle term is the last term of A. P. and first term of following G. P. each of \((2n + 1)\) terms with this term being common to both.
Let \(T_{n+1}\) and \(t_{n + 1}\) are mid terms of A. P. and G. P.
\(T_{n + 1} = a + nd = a + 2n\)
\(t_{n + 1} = AR^n = T_{2n + 1}\left(\frac{1}{2}\right)^n = (a + 4n)\left(\frac{1}{2}\right)^n\)
Given, \(T_{n + 1} = t_{n + 1}\)
\(a + 2n = (a + 4n)\frac{1}{2^n}\)
\[\therefore a = \frac{4n - n.2^{n + 1}}{2^n - 1}\]Hence, mid term is
\[a + 4n = \frac{n.2^{n + 1}}{2^n - 1}\]\(S_n = 3 - \frac{3^{n + 1}}{4^{2n}}\). Putting \(n = 1, 2\) we have
\[T_1 = S_1 = 3 - \frac{9}{16} = \frac{39}{16}\]\[S_2 = 3 - \frac{27}{256} = T_1 + T_2\]\[\therefore T_2 = \frac{117}{256}\]\[r = \frac{T_2}{T_1} = \frac{3}{16}\]Let three number in G. P. are \(ar, a, \frac{a}{r}\) then given that \(ar, 2a, \frac{a}{r}\) in A. P.
\[\therefore 2(2a) = a\left(r + \frac{1}{r}\right)\]or \(r^2 - 4r + 1 = 0\)
or \(r = 2 \pm \sqrt{3}\)
Since, it is an increasing G. P. therefore \(r = 2 + \sqrt{3}\).
Given, \((4x + 1)^2 = (2x + 1)(8x + 1)\)
\(2x = 0 \Rightarrow x = 0\)
But \(x = 0\) makes \(f(x), f(2x)\) and \(f(4x)\) equal which is G. P. of \(r = 1\).
Let \(r\) be the common ratio, then, we have
\(a + ar + ar^2 = x. ar\) or \(r^2 + r(1 - x) + 1 = 0\), \(r\) is real.
\(Discriminant > 0\) i.e. \((1 - x)^2 - 4 > 0\)
or \((x + 1)(x - 3) > 0\) \(\Rightarrow x < -1 ~~\text{or}~~ x > 3\).
Let the numbers be \(a\) and \(b\) then \(A = \frac{a + b}{2}\) or \(a + b = 2A\)
Also, \(G = \sqrt{ab} \Rightarrow G^2 = ab\)
Thus, \(a\) and \(b\) are roots of
\(t^2 - 2At + G^2 = 0\)
\[t = \frac{2A \pm \sqrt{4A^2 - 4G^2}}{2} = A \pm \sqrt{A^2 - G^2}\]Let \(A\) be the A. M. and \(G\) be the G. M., then, we have
\[\frac{A}{G} = \frac{m}{n}\]\[\frac{A}{m} = \frac{G}{n} = k\]\(\therefore a + b = 2mk, ab = n^2k^2\)
Hence, \(a, b\) are roots of
\(x^2 - 2mkx + k^2n^2 = 0\)
\(\therefore x = 2mk \pm 2k\sqrt{m^2 - n^2}\)
\(\therefore a:b = m + \sqrt{m^2 - n^2}: m - \sqrt{m^2 - n^2}\).
\(x = \frac{1}{1 - a}, y = \frac{1}{1 - b}, z = \frac{1}{1 - c}\)
\(\therefore \frac{1}{x} = 1 - a, \frac{1}{y} = 1 - b, \frac{1}{z} = 1 - c\)
Since \(a, b, c\) are in A. P., therefore \(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\) are in A. P.
For \(p, a =1, r = -\tan^2x\)
\[\therefore p = \frac{a}{1 - r} = \frac{1}{1 + \tan^2x} = \cos^2x\]For \(q, a =1, r = -\cot^2y\)
\[\therefore q = \frac{a}{1 - r} = \frac{1}{1 + \cot^2y} = \sin^2y\]\[S = \frac{1}{1 - \tan^2x\cot^2y}\]\[= \frac{1}{1 - \frac{1 - \cos^2x}{\cos^2x}\frac{1 - \sin^2y}{\sin^2y}}\]\[= \frac{pq}{p + q - 1} = \frac{1}{\frac{1}{p} + \frac{1}{q} - \frac{1}{pq}}\]Let side of outermost equilateral triangle is \(a\), then its area is \(\frac{\sqrt{3}}{4}a^2\). The sides of subsequent internal triangles will be \(\frac{a}{2}, \frac{a}{4}, \frac{a}{8}, ...\)
Therefore, total area is \(\frac{\sqrt{3}}{4}a^2\left(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ... \right)\)
\[= \frac{\sqrt{3}}{4}a^2. \frac{1}{1 - \frac{1}{4}} = 1\]\(\cos^2x = |\cos^2x|\)
Sum of infinite series is \(S = \frac{1}{1 - |\cos x|}\) where \(|\cos x| < 1\).
\(E = e^{S\log_e 4} = 4^S\)
\(E\) satisfied theq equation \(t^2 - 20t + 64 = 0 \therefore t = 16, 4\)
\(4^S = 4^1\) or \(4^2\) or \(S = 1\) or \(2\)
or \(\frac{1}{1 - |\cos x|} = 1 ~~\text{or}~~ 2\)
or \(1 - |\cos x| = 1 ~~\text{or}~~\frac{1}{2}\)
\(\Rightarrow |\cos x| = 0 ~~\text{or}~~ \frac{1}{2}\)
\(\therefore \cos x = 0 ~~\text{or}~~ \pm\frac{1}{2}\)
\(x = \frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}\).
The given equation may be written as
\(8^{1 + |\cos x| + |\cos^2x| + .. ~~\text{to}~~ \infty} = 8^2\)
\(1 + |\cos x| + |\cos^2x| + .. ~~\text{to}~~ \infty = 2\)
To sum the G. P., we must observe that for
\(-\pi < x < \pi, x \ne 0\), we have \(|\cos x| < 1\).
Hence \(\frac{1}{1 - |\cos x|} = 2\) or \(1 - |\cos x| = \frac{1}{2}\) by \(S_{\infty}\) for G. P.
or \(|\cos x| = 1/2\) i.e. \(\cos x = \pm 1/2\).
\(T_n = (1 + a + a^2 + ... + a^{n - 1})b^{n - 1}\)
\[= \frac{1 - a^n}{1 - a}.b^{n - 1}\]\[= \frac{1}{1 - a}[b^{n - 1} - a(ab)^{n - 1}]\]Putting \(n = 1, 2, 3, ..., \infty\) and adding
\[S_{\infty} = \frac{1}{1 - a}[(1 + b + b^2 + ... \infty) + a(1 + ab + a^2b^2 + ... \infty)]\]\[S_{\infty} = \frac{1}{1 - a}\left[\frac{1}{1 - b} - a.\frac{1}{1 - ab}\right]\]\[S_{\infty} = \frac{1}{(1 - b)(1 - ba)}\]\(S_{\infty} = \frac{\sin^2x}{1 - \sin^2x} = \tan^2x\)
\[L. H. S. = e^{\tan^2x \log 2} = 2^{\tan^2x}\]and the roots of the equation \(x^2 - 9x + 8 = 0\) are \(1\) and \(8\).
\(2^{\tan^2x} = 1 = 2^0, 2^{\tan^2x} = 8 = 2^3\)
\(\therefore \tan^2x = 0, \tan^2x = 3\)
\(\therefore \tan x = 0, \tan x = \pm \sqrt{3}\)
\(\therefore x = \frac{\pi}{3}\) is the only value of \(x\) satisfying \(0 < x < \frac{\pi}{2}\)
\(\therefore \frac{\cos x}{\cos x + \sin x} = \frac{1}{1 + \tan x} = \frac{1}{1 + \sqrt{3}}\)
\(S_{\lambda = 1 + \frac{1}{\lambda} + \frac{1}{\lambda^2} + ... \infty} = \frac{\lambda}{\lambda - 1}\)
\[\therefore \sum_{\lambda = 1}^n (\lambda - 1)S_{\lambda} = \sum_{\lambda}^n \lambda = \frac{n(n + 1)}{2}\]\(\frac{T_2}{T_1} = \frac{T_3}{T_2} \Rightarrow 2^{(b - a).x} = 2^{(c - b)x}\)
\(\Rightarrow (b - a)x = (c - a)x \Rightarrow b - a = c - a \forall x, x\ne 0\)
Above is true as \(a, b, c\) are in A. P.
Writing, \(a + be^x = 2a - (a - be^x)\), we have
\[\frac{2a}{a - be^x} - 1 = \frac{2b}{b - ce^x} - 1 = \frac{2c}{c - de^x} - 1\]\[\Rightarrow \frac{a - be^x}{a} = \frac{b - ce^x}{b} = \frac{c - de^x}{c}\]\[\Rightarrow 1 - \frac{b}{a}e^x = 1 - \frac{c}{b}e^x = 1 - \frac{d}{c}e^x\]\[\frac{b}{a} = \frac{c}{b} = \frac{d}{c}\]Thus, \(a, b, c\) are in G. P.
Since, \(x, y, z\) are in G. P. \(y^2 = xz\)
and \(2\tan^{-1}x = \tan^{-1}y + \tan^{-1}z\)
\[\frac{2y}{1 - y^2} = \frac{x + z}{1 - xz} \Rightarrow 2y = x + z\]\[4y^2 = (x + z)^2 \Rightarrow 4zx = (x + z)^2 \Rightarrow (x - z)^2 = 0 \Rightarrow x = z\]\[\therefore x = y = z\]Given, \(b - a = c - b\) and \((c - b)^2 = a(b - a)\)
or \((b - a)^2 = a(b - a) \Rightarrow b = 2a\)
but \(c = 2b - a = 3a\).
\(\therefore a : b : c = 1 : 2 : 3\)
\(\log \frac{a}{2b}, \log \frac{2b}{3c}, \log \frac{3c}{a}\) are in A. P.
\(\therefore 2\log \frac{2b}{3c} = \log \frac{a}{2b} + \log \frac{3c}{a}\)
\(\log\left(\frac{2b}{3c}\right)^2 = \log\left(\frac{a}{2b}.\frac{3c}{a}\right)\)
\(\Rightarrow \frac{4b^2}{9c^2} = \frac{3c}{2b}\) or \(8b^3 = 27c^3\) \(\therefore 2b = 3c\)
Also, \(a, b, c\) are in G. P. \(\therefore b^2 = ac\)
\(\frac{9c^2}{4} = ac\) \(\therefore a = \frac{9}{4}c\)
Thus, sides are \(\frac{9}{4}c, \frac{6}{4}c\) and \(c\). Clearly, \(a\) is greatest side so that \(\angle A\) is greatest.
\(\cos A = \frac{b^2 + c^2 - a^2}{2bc} = -\frac{29}{48} < 0\)
Therefore, \(\angle A\) is obstuse so the triangle is obtuse angled triangle.
Given,
\[Area = \begin{vmatrix} a & c & e & a \\ d & e & f & b \end{vmatrix}\]Substituting the values and evaluating the determinant will yield the desired result.
\(a^t = \log_t a . \log_b t = \log_b a\)
\(t = \log_a(\log_b a)\)