cos 1 8 ∘ − sin 1 8 ∘ = 2 sin 2 7 ∘ \cos 18^\circ - \sin 18^\circ = \sqrt{2}\sin 27^\circ cos 1 8 ∘ − sin 1 8 ∘ = 2 sin 2 7 ∘
tan 7 0 ∘ = 2 tan 5 0 ∘ + tan 2 0 ∘ \tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ tan 7 0 ∘ = 2 tan 5 0 ∘ + tan 2 0 ∘
cot ( π 4 + x ) cot ( π 4 − x ) = 1 \cot\left(\frac{\pi}{4} + x\right)\cot\left(\frac{\pi}{4} - x\right) = 1 cot ( 4 π + x ) cot ( 4 π − x ) = 1
cos ( m + n ) θ . cos ( m − n ) θ − sin ( m + n ) θ sin ( m − n ) θ = cos 2 m θ \cos(m + n)\theta.\cos(m - n)\theta - \sin(m + n)\theta\sin(m - n)\theta = \cos 2m\theta cos ( m + n ) θ . cos ( m − n ) θ − sin ( m + n ) θ sin ( m − n ) θ = cos 2 m θ
tan ( θ + ϕ ) + tan ( θ − ϕ ) 1 − tan ( θ + ϕ ) tan ( θ − ϕ ) = tan 2 θ \frac{\tan(\theta + \phi) + \tan(\theta - \phi)}{1 - \tan(\theta + \phi)\tan(\theta - \phi)} = \tan 2\theta 1 − t a n ( θ + ϕ ) t a n ( θ − ϕ ) t a n ( θ + ϕ ) + t a n ( θ − ϕ ) = tan 2 θ
cos 9 ∘ + sin 9 ∘ = 2 sin 5 4 ∘ \cos 9^\circ + \sin 9^\circ = \sqrt{2}\sin 54^\circ cos 9 ∘ + sin 9 ∘ = 2 sin 5 4 ∘
cos 2 0 ∘ − sin 2 0 ∘ cos 2 0 ∘ + sin 2 0 ∘ = tan 2 5 ∘ \frac{\cos 20^\circ - \sin 20^\circ}{\cos 20^\circ + \sin 20^\circ} = \tan 25^\circ c o s 2 0 ∘ + s i n 2 0 ∘ c o s 2 0 ∘ − s i n 2 0 ∘ = tan 2 5 ∘
tan A + tan B tan A − tan B = sin ( A + B ) sin ( A − B ) \frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin(A + B)}{\sin(A - B)} t a n A − t a n B t a n A + t a n B = s i n ( A − B ) s i n ( A + B )
1 tan 3 A − tan A − 1 cot 3 A − cot A = cot 2 A \frac{1}{\tan 3A - \tan A} - \frac{1}{\cot 3A - \cot A} = \cot 2A t a n 3 A − t a n A 1 − c o t 3 A − c o t A 1 = cot 2 A
1 tan 3 A + tan A − 1 cot 3 A − cot A = cot 4 A \frac{1}{\tan 3A + \tan A} - \frac{1}{\cot 3A - \cot A} = \cot 4A t a n 3 A + t a n A 1 − c o t 3 A − c o t A 1 = cot 4 A
sin 3 α sin α + cos 3 α c o s α = 4 cos 2 α \frac{\sin 3\alpha}{\sin\alpha} + \frac{\cos 3\alpha}{cos\alpha} = 4\cos 2\alpha s i n α s i n 3 α + cos α c o s 3 α = 4 cos 2 α
tan ( π 4 + A ) − tan ( π 4 − A ) tan ( π 4 + A ) + tan ( π 4 − A ) = sin 2 A \frac{\tan\left(\frac{\pi}{4} + A \right) - \tan\left(\frac{\pi}{4} - A\right)}{\tan\left(\frac{\pi}{4} + A\right) +
\tan\left(\frac{\pi}{4} - A\right)} = \sin 2A t a n ( 4 π + A ) + t a n ( 4 π − A ) t a n ( 4 π + A ) − t a n ( 4 π − A ) = sin 2 A
tan 4 0 ∘ + 2 tan 1 0 ∘ = tan 5 0 ∘ \tan 40^\circ + 2 \tan 10^\circ = \tan 50^\circ tan 4 0 ∘ + 2 tan 1 0 ∘ = tan 5 0 ∘
tan ( α + β ) tan ( α − β ) = sin 2 α − sin 2 β cos 2 α − sin 2 β \tan(\alpha + \beta)\tan(\alpha - \beta) = \frac{\sin^2\alpha - \sin^2\beta}{\cos^2\alpha - \sin^2\beta} tan ( α + β ) tan ( α − β ) = c o s 2 α − s i n 2 β s i n 2 α − s i n 2 β
tan 2 α − tan 2 β = sin ( α + β ) sin ( α − β ) cos 2 α cos 2 β \tan^2\alpha -\tan^2\beta = \frac{\sin(\alpha + \beta)\sin(\alpha - \beta)}{\cos^2\alpha\cos^2\beta} tan 2 α − tan 2 β = c o s 2 α c o s 2 β s i n ( α + β ) s i n ( α − β )
tan [ ( 2 n + 1 ) π + θ ] + tan [ ( 2 n + 1 ) π − θ ] = 0 \tan[(2n + 1)\pi + \theta] + \tan[(2n + 1)\pi - \theta] = 0 tan [( 2 n + 1 ) π + θ ] + tan [( 2 n + 1 ) π − θ ] = 0
tan ( π 4 + θ ) tan ( 3 π 4 + θ ) + 1 = 0 \tan\left(\frac{\pi}{4} + \theta\right)\tan\left(\frac{3\pi}{4} + \theta\right) + 1 = 0 tan ( 4 π + θ ) tan ( 4 3 π + θ ) + 1 = 0
If tan α = p \tan\alpha = p tan α = p and tan β = q \tan\beta = q tan β = q prove that cos ( α + β ) = 1 − p q ( 1 + p 2 ) ( 1 + q 2 ) \cos(\alpha + \beta) = \frac{1 - pq}{\sqrt{(1 + p^2)(1 +
q^2)}} cos ( α + β ) = ( 1 + p 2 ) ( 1 + q 2 ) 1 − pq
if tan β = 2 sin α sin γ sin ( α + γ ) , \tan \beta = \frac{2\sin\alpha\sin\gamma}{\sin(\alpha + \gamma)}, tan β = s i n ( α + γ ) 2 s i n α s i n γ , show that cot α , cot β , cot γ \cot\alpha, \cot\beta,
\cot\gamma cot α , cot β , cot γ are in A.P.
Eliminate θ \theta θ if tan ( θ − α ) = a \tan(\theta - \alpha) = a tan ( θ − α ) = a and tan ( θ + α ) = b \tan(\theta + \alpha) = b tan ( θ + α ) = b
Eliminate α \alpha α and β \beta β if tan α + tan β = b , cot α + cot β = a \tan\alpha + \tan\beta = b, \cot\alpha + \cot\beta = a tan α + tan β = b , cot α + cot β = a and
α + β = γ \alpha + \beta = \gamma α + β = γ
If A + B = 4 5 ∘ , A + B = 45^\circ, A + B = 4 5 ∘ , show that ( 1 + tan A ) ( 1 + tan B ) = 2 (1 + \tan A)(1 + \tan B) = 2 ( 1 + tan A ) ( 1 + tan B ) = 2
If sin α sin β − cos α cos β + 1 = 0 , \sin\alpha\sin\beta - \cos\alpha\cos\beta + 1 = 0, sin α sin β − cos α cos β + 1 = 0 , prove that 1 + cot α tan β = 0 1 + \cot\alpha\tan\beta = 0 1 + cot α tan β = 0
If tan β = n sin α cos α 1 − n sin 2 α , \tan\beta = \frac{n\sin\alpha\cos\alpha}{1 - n\sin^2\alpha}, tan β = 1 − n s i n 2 α n s i n α c o s α , prove that tan ( α − β ) = ( 1 − n ) α \tan(\alpha - \beta) = (1 - n)\alpha tan ( α − β ) = ( 1 − n ) α
If cos ( β − γ ) + cos ( γ − α ) + cos ( α − β ) = − 3 2 , \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2}, cos ( β − γ ) + cos ( γ − α ) + cos ( α − β ) = − 2 3 , prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0 \cos\alpha +
\cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \sin\gamma = 0 cos α + cos β + cos γ = sin α + sin β + sin γ = 0
If tan α = m m + 1 , tan β = 1 2 m + 1 , \tan\alpha = \frac{m}{m + 1}, \tan\beta = \frac{1}{2m + 1}, tan α = m + 1 m , tan β = 2 m + 1 1 , prove that α + β = π 4 \alpha + \beta = \frac{\pi}{4} α + β = 4 π
If A + B = 4 5 ∘ , A + B = 45^\circ, A + B = 4 5 ∘ , show that ( cot A − 1 ) ( cot B − 1 ) = 2 (\cot A - 1)(\cot B - 1) = 2 ( cot A − 1 ) ( cot B − 1 ) = 2
If tan α − tan β = x \tan\alpha - \tan\beta = x tan α − tan β = x and cot β − cot α = y , \cot\beta - \cot\alpha = y, cot β − cot α = y , prove that cot ( α − β ) = x + y x y \cot(\alpha - \beta) =
\frac{x + y}{xy} cot ( α − β ) = x y x + y
If a right angle be divided into three pats α , β \alpha, \beta α , β and γ , \gamma, γ , prove that cot α = tan β + tan γ 1 − tan β tan γ \cot\alpha =
\frac{\tan\beta + \tan\gamma}{1 - \tan\beta\tan\gamma} cot α = 1 − t a n β t a n γ t a n β + t a n γ
If 2 tan β + cot β = tan α , 2\tan\beta + \cot \beta = \tan\alpha, 2 tan β + cot β = tan α , show that cot β = 2 tan ( α − β ) \cot \beta = 2\tan(\alpha - \beta) cot β = 2 tan ( α − β )
If in any △ A B C , C = 9 0 ∘ , \triangle ABC, C = 90^\circ, △ A BC , C = 9 0 ∘ , prove that cosec ( A − B ) = a 2 + b 2 a 2 − b 2 \cosec(A - B) = \frac{a^2 + b^2}{a^2 - b^2} cosec ( A − B ) = a 2 − b 2 a 2 + b 2 and sec ( A − B ) = c 2 2 a b \sec(A
- B) = \frac{c^2}{2ab} sec ( A − B ) = 2 ab c 2
If cot A = a c , cot B = c a , tan C = c a 3 \cot A = \sqrt{ac}, \cot B = \sqrt{\frac{c}{a}}, \tan C = \sqrt{\frac{c}{a^3}} cot A = a c , cot B = a c , tan C = a 3 c and c = a 2 + a + 1 , c = a^2 + a + 1, c = a 2 + a + 1 , prove
that A = B + C A = B + C A = B + C
If tan ( A − B ) tan A + sin 2 C sin 2 A = 1 , \frac{\tan(A - B)}{\tan A} + \frac{\sin^2C}{\sin^2A} = 1, t a n A t a n ( A − B ) + s i n 2 A s i n 2 C = 1 , prove that tan A tan B = tan 2 C \tan A\tan B = \tan^2 C tan A tan B = tan 2 C
If sin α sin β − cos α cos β = 1 \sin\alpha\sin\beta - \cos\alpha\cos\beta = 1 sin α sin β − cos α cos β = 1 show that tan α + tan β = 0 \tan\alpha + \tan\beta = 0 tan α + tan β = 0
If sin θ = 3 sin ( θ + 2 α ) , \sin\theta = 3\sin(\theta + 2\alpha), sin θ = 3 sin ( θ + 2 α ) , prove that tan ( θ + α ) , \tan(\theta + \alpha), tan ( θ + α ) , prove that tan ( θ + α ) + 2 tan α = 0 \tan(\theta +
\alpha) + 2\tan\alpha = 0 tan ( θ + α ) + 2 tan α = 0
If 3 tan θ tan ϕ = 1 , 3\tan\theta\tan\phi = 1, 3 tan θ tan ϕ = 1 , prove that 2 cos ( θ + ϕ ) = cos ( θ − α ) 2\cos(\theta + \phi) = \cos(\theta - \alpha) 2 cos ( θ + ϕ ) = cos ( θ − α )
Find the sign of the expression sin θ + cos θ \sin\theta + \cos\theta sin θ + cos θ when θ = 10 0 ∘ \theta = 100^\circ θ = 10 0 ∘
Prove that the value of 5 cos θ + 3 cos ( θ + π 3 ) + 3 5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3 5 cos θ + 3 cos ( θ + 3 π ) + 3 lies between − 4 -4 − 4 and
10 10 10
If m tan ( θ − 3 0 ∘ ) = n tan ( θ + 12 0 ∘ ) , m\tan(\theta - 30^\circ) = n\tan(\theta + 120^\circ), m tan ( θ − 3 0 ∘ ) = n tan ( θ + 12 0 ∘ ) , show that cos 2 θ = m + n 2 ( m − n ) \cos2\theta = \frac{m + n}{2(m - n)} cos 2 θ = 2 ( m − n ) m + n
if α + β = θ \alpha + \beta = \theta α + β = θ and tan α : tan β = x : y , \tan\alpha:\tan\beta = x:y, tan α : tan β = x : y , prove that sin ( α − β ) = x − y x + y sin θ \sin(\alpha - \beta) = \frac{x -
y}{x + y}\sin\theta sin ( α − β ) = x + y x − y sin θ
Find the maximum and minimum value of 7 cos θ + 24 sin θ 7\cos\theta + 24\sin\theta 7 cos θ + 24 sin θ
Show that sin 10 0 ∘ − sin 1 0 ∘ \sin 100^\circ - \sin 10^\circ sin 10 0 ∘ − sin 1 0 ∘ is positive.