Given, sinα=53 and cosβ=419
Therefore, cosα=54 and sinβ=4140
sin(α−β)=sinαcosβ−cosαsinβ
=53419−544140
=20527−160=−205133
cos(α+β)=cosαcosβ−sinαsinβ
=54419−534140
=20536−120=−20584
Given, sinα=5345 and sinβ=6533
Thus, cosα=5328 and cosβ=6556
sin(α−β)=sinαcosβ−cosαsinβ
=53456556−53286533
=34452520−924=34451596
sin(α+β)=sinαcosβ+cosαsinβ
=53456556+53286533
=34452520+924=34453444
Given, sinα=1715 and cosβ=1312
cosα=178 and sinβ=135
tanα=815 and tanβ=125
sin(α+β)=sinαcosβ+cosαsinβ
=17151312+178135
=221220
cos(α−β)=cosαcosβ+sinαsinβ
=1781312+1715135
=221171
tan(α+β)=1−tanαtanβtanα+tanβ
=1−815125815+125
=21220
L.H.S. =cos(45∘−A)cos(45∘−B)−sin(45∘−A)sin(45∘−B)
=[(cos45∘cosA+sin45∘sinA)(cos45∘cosB+sin45∘sinB)−(sin45∘cosA−cos45∘sinA)(sin45∘cosB−cos45∘sinB)]
Substituting valus for sin45∘ and cos45∘
=[(2cosA+2sinA)(2cosB+2sinB)]−[(2cosA−2sinA)(2cosB−2sinB)]
=[2cosAcosB+2cosAsinB+2sinAcosB+2sinAsinB]−[2cosAcosB−2cosAsinB−2sinAcosB+2sinAsinB]
=sinAcosB+cosAsinB=sin(A+B)
L.H.S. =sin(45∘+A)cos(45∘−B)+cos(45∘+A)sin(45∘−B)
=[(sin45∘cosA+cos45∘sinA)(cos45∘cosB+sin45∘sinB)+(cos45∘cosA−sin45∘sinA)(sin45∘cosB−cos45∘)sinB]
=[(2cosA+2sinA)(2cosB+2sinB)+(2cosA−2sinA)(2cosB−2sinB)]
=[2cosAcosB+2cosAsinB+2sinAcosB+2sinAsinB+2cosAcosB−2cosAsinB−2sinAcosB+2sinAsinB]
=cosAcosB+sinAsinB=cos(A−B)
L.H.S. =cosAcosBsin(A−B)+cosBcosCsin(B−C)+cosCcosAsin(C−A)
=cosAcosBsinAcosB−cosAsinB+cosBcosCsinBcosC−cosBsinC+cosCcosAsinCcosA−cosCsinA
=tanA−tanB+tanB−tanC+tanC−tanA=0= R.H.S.
L.H.S. =sin105∘+cos105∘
=sin(60∘+45∘)+cos(60∘+45∘)
=sin60∘cos45∘+cos60∘sin45∘+cos60∘cos45∘−sin60∘sin45∘
=cos45∘(sin60∘+cos60∘+cos60∘−sin60∘)[∵sin45∘=cos45∘]
=cos45∘= R.H.S.
Given, sin75∘−sin15∘=cos105∘+cos15∘
⇒sin75∘−sin15∘=cos(90∘+15∘)+sin(90∘−15∘)
⇒sin75∘−sin15∘=cos90∘cos15∘−sin90∘sin15∘+sin(90∘−15∘)
⇒sin75∘−sin15∘=−sin15∘+sin75∘[∵cos90∘=0 & sin90∘=1]
Thus, we have proven the equality.
L.H.S. =cosαcos(γ−α)−sinαsin(γ−α)
=cosα(cosγcosα+sinγsinα)−sinα(sinγcosα−sinαcosγ)
=cos2αcosγ+sinγsinαcosα−sinαsinγcosα−sin2αcosγ
=cosγ(sin2α+cos2α)=cosγ= R.H.S.
L.H.S. =cos(α+β)cosγ−cos(β+γ)cosα
=cosαcosβcosγ−sinαsinβcosγ−cosαcosβcosγ+cosαsinβsinγ
=sinβ(cosαsinγ−sinαcosγ)
=sinβsin(γ−α)= R.H.S.
L.H.S. =sin(n+1)Asin(n−1)A+cos(n+1)Acos(n−1)A
=cos(n+1−(n−1))A=cos2A= R.H.S.
L.H.S. =sin(n+1)Asin(n+2)A+cos(n+1)Acos(n+2)A
=cos(n+1−(n+1))=cosA= R.H.S.
cos15∘=cos(45∘−cos30∘)
=cos45∘cos30∘+sin45∘sin30∘
=2123+2121
=223+1
sin105∘=sin(60∘+45∘)
=sin60∘cos45∘+cos60∘sin45∘
=2321+2121
=223+1= R.H.S.
tan105∘=tan(60∘+45∘)
=1−tan60∘tan45∘tan60∘+tan45∘
=1−33+1
cot855∘tan495∘=cot(720∘+135∘)tan(360∘+135∘)
=cot135∘tan135∘=tan2135∘=(−1)2=1
sin(π+θ)=−sinθ∴sin(nπ+θ)=(1)nsinθ
sin(nπ+(−1)n4π)=(−1)nsin((−1)n4π)
=(−1)n(−1)nsin4π [∵sin(−θ)=−sinθ]
=(−1)2nsin4π=21
L.H.S. =sin15∘=sin(60∘−45∘)
=sin60∘cos45∘−cos60∘sin45∘
=2321−2121
=223−1= R.H.S.
L.H.S. =cos75∘=cos(45∘+30∘)
=cos45∘cos30∘−sin45∘sin30∘
=2123−2121
=223−1= R.H.S.
L.H.S. =tan75∘=tan(45∘+30∘)
=1−tan45∘tan30∘tan45∘+tan30∘
=1−1.311+31
=33−133+1
=3−13+1=3−1(3+1)2=2+3= R.H.S.
L.H.S. =tan15∘=tan(45∘−30∘)
=1+tan45∘tan30∘tan45∘−tan30∘
=1+1.311−31
=33+133−1
=3+13−1=3−1(3−1)2=2−3= R.H.S.
cos1395∘=cos(3∗360∘+315∘)=cos315∘=cos(270∘+45∘)
=cos45∘=21
tan(−330∘)=−tan(330∘)=−tan(270∘+60∘)==cot60∘=31
Given, sin300∘cosec1050∘−tan(−120∘)
=sin(270∘+30∘)cosec(720∘+270∘+60∘)+tan(90∘+30∘)
=−cos30∘.−cos60∘1−cot30∘
=23.12−3=0
Given, tan(1211π)
=tan(π−12π)=−tan15∘
Using the value computed in 20 for tan15∘ we have 3−2 as the answer.
We know that tan(−θ)=−tanθ, thus
tan((−1)n4π)=(−1)ntan4π=(−1)n
Given, cos18∘−sin18∘=2sin27∘
21cos18∘−21sin18∘=sin27∘
L.H.S. =sin45∘cos18∘−cos45∘sin18∘
=sin(45∘−18∘)=sin27∘= R.H.S.
L.H.S. =tan70∘=tan(50∘+20∘)
=1−tan50∘tan20∘tan50∘+tan20∘
tan70∘−tan70∘tan50∘tan20∘=tan50∘+tan20∘
tan70∘=tan70∘tan50∘tan20∘+tan50∘+tan20∘
=tan(90∘−20∘)tan50∘tan20∘+tan50∘+tan20∘
=cot20∘tan50∘tan20∘+tan50∘+tan20∘
=tan50∘+tan50∘+tan20∘=2tan50∘+tan20∘= R.H.S.
L.H.S. =sin(4π+x)sin(4π−x)cos(4π+x)cos(4π−x)
=sin24π−sin2xcos24π−sin2x=21−sin2x21−sin2x=1= R.H.S.
L.H.S. =cos(m+n)θ.cos(m−n)θ−sin(m+n)θsin(m−n)θ
=cos(m+n+m−n)θ=cos2mθ= R.H.S.
L.H.S. =1−tan(θ+ϕ)tan(θ−ϕ)tan(θ+ϕ)+tan(θ−ϕ)
=tan(θ+ϕ+θ−ϕ)=tan2θ= R.H.S.
Given cos9∘+sin9∘=2sin54∘
21cos9∘+21sin9∘=sin54∘
L.H.S. =sin45∘cos9∘+cos45∘sin9∘
=sin(45∘+9∘)=sin54∘= R.H.S.
L.H.S. =cos20∘+sin20∘cos20∘−sin20∘
Dividing both numerator and denominaor with cos20∘, we get
=1+tan20∘1−tan20∘=1−tan45∘tan20∘tan45∘−tan20∘ [∵tan45∘=1]
=tan(45∘−20∘)=tan25∘= R.H.S.
L.H.S. =tanA−tanBtanA+tanB
=cosAsinA−cosBsinBcosAsinA+cosBsinB
=sinAcosB−sinBcosAsinAcosB+sinBcosA=sin(A−B)sin(A+B)= R.H.S.
L.H.S. =tan3A−tanA1−cot3A−cotA1
=tan3A−tanA1−tan3A1−tanA11
=tan3A−tanA1−tanA−tan3AtanAtan3A
=tan3A−tanA1+tanAtan3A=tan(3A−A)1=cot2A= R.H.S.
This is similar to previous problema and can be solved likewise.
L.H.S. =sinαsin3α+cosαcos3α
=sinαcosαsin3αcosα+cos3αsinα
=sinαcosαsin(3α+α)
=2sin2α2sin4α [∵sinαcosα=21sin2α]
=2sin2α2sin2αcos2α=4cos2α= R.H.S.
L.H.S. =tan(4π+A)+tan(4π−A)tan(4π+A)−tan(4π−A)
=1−tanA1+tanA+1+tanA1−tanA1−tanA1+tanA−1+tanA1−tanA
=(1+tanA)2+(1−tanA)2(1+tanA)2−(1−tanA)2
=2+2tan2A4tanA=sec2A2tanA=2sinAcosA=sin2A
Given, tan40∘+2tan10∘=tan50∘
R.H.S. =tan50∘=tan(40∘+10∘)
=1−tan40∘tan10∘tan40∘+tan10∘
tan50∘−tan50∘tan40∘tan10∘=tan40∘+tan10∘
tan50∘−cot40∘tan40∘tan10∘=tan40∘+tan10∘
tan50∘=tan40∘+2tan10∘
R.H.S. =tan(α+β)tan(α−β)
=cos(α+β)sin(α+β)cos(α−β)sin(α−β)
=cosαcosβ−sinαsinβsinαcosβ+cosαsinβcosαcosβ+sinαsinβsinαcosβ−cosαsinβ
=cos2αcos2β−sin2αsin2βsin2αcos2β−sin2βcos2α
=cos2α(1−sin2β)−sin2β(1−cos2α)sin2α(1−sin2β)−sin2β(1−sin2α)
=cos2α−sin2βsin2α−sin2β= R.H.S.
L.H.S. =tan2α−tan2β=cos2αsin2α−cos2βsin2β
=cos2αcos2βsin2αcos2β−sin2βcos2α
=cos2αcos2β(sinαcosβ+sinβsinα)(sinαcosβ−sinβsinα)
=cos2αcos2βsin(α+β)sin(α−β)= R.H.S.
L.H.S. =tan[(2n+1)π+θ]+tan[(2n+1)π−θ]
=tan(π+θ)+tan(π−θ) [∵tan2nπ=0]
=tanθ−tanθ=0= R.H.S.
L.H.S. =tan(4π+θ)tan(43π+θ)+1
=tan(4π+θ)tan[π−(4π−θ)]+1
=−tan(4π+θ)tan(4π−θ)+1
=−tan(4π+θ)tan[(2π−4pi−θ)]+1
=−tan(4π+θ)cot(4π+θ)+1=−1+1=0= R.H.S.
R.H.S. =(1+p2)(1+q2)1−pq
Substituting for p and q, we get
=(1+tan2α)(1+tan2β)1−tanαtanβ
=secαsecβcosαcosβcosαcosβ−sinαsinβ
=cos(α+β)= R.H.S.
Given, tanβ=sin(α+γ)2sinαsinγ
Inverting, we get
2cotβ=sinαsinγsin(α+γ)=sinαsinγsinαcosγ+sinγcosα
=cotα+cotγ
Thus, cotα,cotβ,cotγ are in A.P.
tan(θ+α−(θ−α))=tan2α=1+tan(θ+α)tan(θ−α)tan(θ+α)−tan(θ−α)
=1+abb−a
tanγ=tan(α+β)=1−tanαtanβtanα+tanβ
a−b=cotα+cotβ−tanα−tanβ
=sinαsinβsin(α+β)−cosαβsin(α+β)
=sin(α+β)(sinαsinβcosαcosβcosαcosβ−sinαsinβ)
=sinαsinβcosαcosβsin(α+β)cos(α+β)
ab=(tanα+tanβ)(cotα+cotβ)
=sinαsinβcosαcosβsin2(α+β)
a−bab=tan(α+β)=tanγ
Given, A+B=45∘∴tan(A+B)=1
1−tanAtanBtanA+tanB=1
1+tanA+tanB+tanAtanB=2
(1+tanA)(1+tanB)=2
Given, sinαsinβ−cosαcosβ+1=0
⇒cosαcosβ−sinαsinβ=1
⇒cos(α+β)=1
⇒sin(α+β)=0
1+cotαtanβ=1+sinαcosβcosαsinβ
=sinαcosβsinαcosβ+cosαsinβ
=sinαcosβsin(α+β)=sinαcosβ0=0
tanβ=1−nsin2αnsinαcosα=cos2α1−ncos2αsin2αcos2αnsinαcosα
=sec2α−ntan2αntanα=1+(1−n)tan2αntanα
Now, tan(α−β)=1−tanα1+(1−n)tan2αntanαtanα−1+(1−n)tan2αntanα
=1+(1−n)tan2α+ntan2αtanα+(1−n)tan3α−ntanα
=1+tan2α(1−n)tanα+(1−n)tan3α
=1+tan2α(1−n)tanα(1+tan2α)=(1−n)tanα
Given, cos(β−γ)+cos(γ−α)+cos(α−β)=−23
3+2cos(β−γ)+2cos(γ−α)+2cos(α−β)=0
3+2(cosβcosγ+sinβsinγ)+2(cosγcosα+sinγsinα)+2(cosαcosβ+sinαsinβ)=0
(cos2α+sin2α)+(cos2β+sin2β)+(cos2γ+sin2γ)+2(cosβcosγ+sinβsinγ)+2(cosγcosα+sinγsinα)+2(cosαcosβ+sinαsinβ)=0
(cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ2)=0
cosα+cosβ+cosγ=sinα+sinβ+sinγ=0
tan(α+β)=1−tanαtanβtanα+tanβ
=1−m+1m2m+11m+1m+2m+11
=2m2+3m+1−n2m2+m+m+1=1
Thus, α+beta=4π
Given (cotA−1)(cotB−1)=2
cotAcotB−1−cotA−cotB=0
cotAcotB−1=cotA+cotB⇒cotA+cotBcotAcotB−1=1
cot(A+B)=cot45∘
Thus, A+B=45∘
which we have proved in reverse.
Given, tanα−tanβ=x and cotβ−cotα=y, we have to prove that cot(α−β)=xyx+y
Let cot(α−β)=xyx+y=(tanα−tanβ)(cotβ−cotα)tanα−tanβ+cotβ−cotα
tan(α−β)=tanα−tanβ+cotβ−cotα(tanα−tanβ)(cotβ−cotα)
=1+cotβ−cotαtanα−tanβtanα−tanβ
=1+cosαcosβsin(α−β)cosαcosβsin(α−β)tanα−tanβ
=1+tanαtanβtanα−tanβ=tan(α−β)
Hence proved.
Given α+β+γ=90∘=2π
cotα=cot(2π−(β+γ))=tan(β+γ)
=1−tanβtanγtanβ+tanγ
We have to prove that cotβ=2tan(α−β)
tanβ1=21+tanαtanβtanα−tanβ
1+tanαtanβ=2tanαtanβ−2tan2β
Dividing both sides by tanβ, we get
cotβ+tanα=2tanα−2tanβ
cotβ+2tanβ==tanα
Hence proved.
sinA=ca,sinB=cb,cosA=cb,cosB=ca
cosec(A−B)=sin(A−B)1=sinAcosB−cosAsinB1=c2a2−c2b21
=a2−b2c2=a2−b2a2+b2
sec(A−B)=cos(A−B)1=cosAcosB+sinAsinB1=2abc2
We have to prove that A+B=C i.e. tan(A+B)=tanC
1−tanAtanBtanA+tanB=tanC
1−ac1caac1+ca=a3c
=1−c1ac1+ca
ac1+a.c−1c=a3c
c−1ac+c=ac
a2c+ac=c2−c
a2+a+1=c which is given, hence proved.
Given tanAtan(A−B)+sin2Asin2C=1
sin2Asin2C=1−tanAtan(A−B)
=1−sinAcos(A−B)sin(A−B)cosA=sinAcos(A−B)sin(A−A+B)
sin2C=cos(A−B)sinAsinB
cosec2C=sinAsinBcos(A−B)=1+cotAcotB=cot2C
⇒tanAtanB=tan2C
Given, sinαsinβ−cosαcosβ=1
cos(α+β)=−1⇒α+β=(2n+1)π
tan(α+β)=0⇒tanα+tanβ=0
Given, sinθ=3sin(θ+2α)
sin(θ+α−α)=3sin(θ+α+α)
sin(θ+α)cosα−sinαcos(θ+α)=3sin(θ+α)cosα+3cos(θ+α)sinα
2sin(θ+α)cosα+4sinαcos(θ+α)=0
Dividingboth sides with 2cos(θ+α)cosα, we get
tan(θ+α)+2tanα=0
Given, 3tanθtanϕ=1⇒cotθcotϕ=3
sinθsinϕcosθcosϕ=3
Applying componendo and dividendo
cosθcosϕ−sinθsinϕcosθcosϕ+sinθsinϕ=3−13+1
cos(θ−ϕ)=2cos(θ+ϕ)
Let z=cosθ+sinθ=2(21cosθ+21sinθ)
=2cos(θ−4π)
=2cos55∘ which has positive sign.
Let z=5cosθ+3cos(θ+3π)+3
z=5cosθ+23cosθ−233sinθ+3
=213cosθ−233sinθ+3
=7(1413cosθ−1433sinθ)+3
Let cosα=1413 then sinα=1433
y=7(cosαcosθ−sinαsinθ)+3
y=7cos(θ+α)+3
Now maximum and minimum values of cos(θ+α) are 1 and −1. Thus, value of y will lie
between 4 and 10.
Given, mtan(θ−30∘)=ntan(θ+120∘)
tan(θ+120∘)tan(θ−30∘)=mn
cos(θ−30∘)sin(θ)+120∘sin(θ−30∘)cos(θ)+120∘=mn
Applying componendo and dividendo
sin[(θ+120∘)−(θ−30∘)sin[(θ+120∘)+(θ−30∘)]=m−nm+n
sin150∘sin(2θ+90∘)=m−nm+n
cos2θ=2(m−n)m+n
Given, tanβtanα=yx
Applying componendo and dividendo
tanα−tanβtanα+tanβ=x−yx+y
sin(α−β)sin(α+β)=x−yx+y
sin(α−β)=x+yx−ysinθ
We have to find the maximum and minimul values of 7cosθ+24sinθ=y (let)
=25(257cosθ+2524sinθ)
If cosα=257 then sinα=7524
y=25cos(θ−α)
Thus, maximum and minimum values of y are 25 and −25.
Given expression is sin100∘−sin10∘=cos10∘−sin10∘=y (let)
y=2(21cos10−2sin10∘1)
=2cos(45∘+10∘)
Thus, the sign is positive.