Definition: Inverse functions related to trigonometrical ratios are called inverse trigonometric functions. The definition of
different inverse trigonometric functions is given below:
If sinθ=x, then θ=sin−1x, provided −1≤x≤1 and −2π≤θ≤2π
If cosθ=x, then θ=cos−1x, provoded −1≤x≤1 and 0≤θ≤π
If tanθ=x, then θ=tan−1x, provided −∞<x<∞ and −2π<θ<2π
If cotθ=x, then θ=cot−1x, provided −∞<x<∞ and 0<θ<π
If secθ=x, then θ=sec−1x, provided x≤−1 or x≥1 and 0≤θ≤π,θ=2π
If cosecθ=x, then θ=cosec−1x, provided x≤−1 or x≥1 and x≤−1
or x≥1 and −2π≤θ≤2π,θ=0
Note: In the above definition restrictions on θ are due to the consideration of principal values of inverse
terms. If these restrictions are removed, the terms will represent inverse trigonometrical relation and not functions.
Notations:I. Arc sinx denotes the sine inverse of x [General value]
arcsinx denotes the sine inverse of x [Principal value]
II.sin−1x denotes the principal value of sine inverse x
From the above notations three imprtant results follow:
sin−1x=θ⇒sinθ=x and θ is the principal value.
sin−1x=arcsinx,cos−1x=arccosx
From the definition of the inverse functions, we know that if y=f(x) is a function then for f−1 to be a
function, f must be one-one and onto mapping.
When we consider y=Arcsinx, for any x∈[−1,1] infinite number of values of y are obtained and hence
it does not represent inverse functions. When y=arcsinx or sin−1x, corresponding to one value of
x∈[−1,1], one values of y is obtained and hence it represents inverse trigonometric function.
Hence, for inverse trigonometric functions, consideration of principal values is essential.
Numerically smallest angle is known as the principal value.
Since inverse trigonometrical terms are in fact angles, definitions of principal value of inverse trigonometrical term is the same
as the definition of the principal value of angles.
Suppose we have to find the principal value of sin−121.
For this let sin−121=θ then sinθ=21
⇒θ=…,−611π,−67π,6π,65π,…
Among all these angles 6π is the numerically smallest angles satisfying sinθ=21 and
hence it is principal value.
The steps to find principal value is same as described in previous chapter.
Prove that tan−131+tan−151+tan−171+tan−181=4π
Prove that sin−154+sin−1135+sin−16516=2π
Prove that 4tan−151−tan−1701+tan−1991=4π
Prove that cot−19+cosec−1441=4π
Prove that 4(cot−13+cosec−15)=π
Prove that tan−1x=2tan−1[cosectan−1x−tancot−1x]
Prove that 2tan−1[a+ba−btan2x]=cos−1[a+bcosxb+acosx] for 0<b≤a, and x≥0.
Prove that tan−11+xyx−y+tan−11+yzy−z+tan−11+zxz−x=tan−1(1+x2y2x2−y2)+tan−1(1+y2z2y2−z2)+tan−1(1+z2x2z2−x2)
Prove that sincot−1tancos−1x=x
Prove that tan−1(21tan2x)+tan−1(cotx)+tan−1(cot3x)=0 if
4π<x<2π,=π if 0<x<π
Prove that tan−121+tan−131=tan−153+tan−141=4π
Prove that tan−13b2a−b+tan−13a2b−a=3π
Prove that tan−152+tan−131+tan−1121=4π
Prove that 2tan−151+tan−141=tan−14332
Prove that tan−11+tan−12+tan−13=π=2(tan−11+tan−121+tan−131)
Prove that tan−1x+cot−1y=tan−1y−xxy+1
Prove that tan−1x+y1+tan−1x2+xy+1y=cot−1x
Prove that 2cot−15+cot−17+2cot−18=π/4
Prove that tan−11+aba−b+tan−11+bcb−c+tan−11+cac−a=0
Prove that tan−11+a3b3a3−b3+tan−11+b3c3b3−c3+tan−11+c3a3c3−a3=0
Prove that cot−1y−xxy+1+cot−1z−yyz+1+cot−1z=tan−1x1
Prove that cos−1(1+cosθcosϕcosθ+cosϕ)=2tan−1(tan2θtan2ϕ)
Prove that sin−153+sin−1178=sin−18577
Prove that cos−153+cos−11312+cos−16563=2π
Prove that sin−1x+sin−1y=cos−1(1−x21−y2−xy) where x,y∈[0,1]
Prove that 4(sin−1101+cos−152)=π
Prove that cos(2sin−1x)=1−2x2
Prove that 21cos−1x=sin−121−x=cos−121+x=tan−11+x1−x2
Prove that sin−1x+cos−1y=tan−1y1−x2−x1−y2xy+(1−x2)(1−y2)
Prove that tan−1x+tan−1y=21sin−1(1+x2)(1+y2)2(x+y)(1−xy)
Prove that 2tan−1(cosectan−1x−tancot−1x)=tan−1x
Prove that costan−1sincot−1x=x2+2x2+1
In any △ABC if A=tan−12 and B=tan−13, prove that C=4π
If cos−1x+cos−1y+cos−1z=π then prove that x2+y2+z2+2xyz=1
If cos−12x+cos−13y=θ, prove that 9x2−12xycosθ+4y2=36sin2θ
If r=x+y+z then prove that tan−1yzxr+tan−1xzyr+tan−1xyzr=π
If u=cot−1cos2θ−tan−1cos2θ then prove that sinu=tan2θ
Solve cos−1x3+cos−1x=2π
Solve sin−1x+sin−12x=3π
If tan−1x+tan−1y+tan−1z=2π, prove that xy+yz+zx=1
If tan−1x+tan−1y+tan−1z=π, prove that x+y+z=xyz
If sin−1x+sin−1y=2π, prove that x1−y2+y1−x2=1
If sin−1x+sin−1y+sin−1z=π, prove that x1−x2+y1−y2+z1−z2=2xyz
Establish the relationship between tan−1x,tan−1y,tan−1z are in A.P. and if further x,y,z are
also in A.P. then prove that x=y=z.
Solve for x,cot−1x+sin−151=4π
Solve tan−12x+tan−13x=4π
Solve tan−1x+tan−11−x22x=3π
Solve tan−121=cot−1x+tan−171
Solve tan−1(x−1)+tan−1x+tan−1(x+1)=tan−13x
Solve tan−1x−1x+1+tan−1xx−1=π+tan−1(−7)
Solve cot−1(a−1)=cot−1x+cot−1(a2−x+1)
Solve sin−11+α22α+sin−11+β22β=2tan−1x
Solve cos−1x2+1x2−1+tan−1x2−12x=32π
Solve sin−11+a22a+cos−11+b21−b2=2tan−1x
Solve sin−1x+sin−1(1−x)=cos−1x
Solve tan−1ax+21sec−1bx=4π
Solve tan(cos−1x)=sin(tan−12)
Solve tan(sec−1x1)=sincos−151
Find the values of x and y satisfying sin−1x+sin−1y=32π and cos−1x−cos−1y=3π
Find the angle sin−1(sin10)
Using principal values, express the following as a single angle 3tan−121+2tan−151+sin−1655142
Find the value of 2cos−1x+sin−1x at x=51 where 0≤cos−1x≤π and
−2π≤sin−1x≤2π.
Show that 21cos−153=tan−121=4π−21cos−154
Find the greater angle between 2tan−1(22−1) and 3sin−131+sin−153
Prove that tan−1(x+a1ya1x−y)+tan−1(1+a2a1a2−a1)+tan−1(1+a3a2a3−a2)+…+tan−1(1+anan−1an−an−1)+tan−1an1=tan−1yx
Find the sum cot−12+cot−18+cot−118+…+ to ∞
Show that the function y=2tan−1x+sin−11+x22x is constant for x≥1. Find the value of
this constant.
Prove the relations cos−1x0=x1x2x3…to∞1−x02 where the successive
quantities xr are connected by the relation xr+1=21+xr where 0≤cos−1x0≤π.
If a,b are positive quantities and if a1=2a+b,b1=a1b,a2=2a1+b1,b2=a2b1 and so on then show that limn→∞anlimn→∞bn=cos−1bab2−a2
Using Mathematical Induction prove that tan−131+tan−171+…+tan−1n2+n+11=tan−1n+2n
If x1,x2,x3,x4 are the roots of the equation x4−x3sin2β+x2cos2β−xcosβ−sinβ=0 then prove that tan−1x1+tan−1x2+tan1x3+tan−1x4=nπ+2π−β
Find theh value of cot−1(cot45π)
Find the value of sin−1(sin5)
Find the value of cos−1cos45π
Find the value of cos−1(cos10)
Evaluate sin(2tan−131)+costan−122
Evaluate cot[cot−17+cot−18+cot−118]
Prove that sin−153+cos−11312+cot−13356=2π
Prove that 2cot−15+cot−17+2cot−18=4π
Prove that tan−11+tan−12+tan−13=2(tan−11+tan−121+tan−131).
If A=tan−171 and B=tan−131 then prove that cos2A=sin4B.
Find the sum tan−11+1.2x2x+tan−11+2.3x2x+…+tan−11+n(n+1)x21,x>0.
Find the sum tan−11+a1a2d+tan−11+a2a3d+…+tan−11+anan+1d if a1,a2,…,an+1 form an arithmetic progression with a common difference of d and d>0,ai>0 for i=1,2,3,…,n+1.
For what value of x, the equality sin−1(sin5)>x2−4x holds.
If tan−1y=5tan−1x, express y as an algebraic function of x and hence show that
18∘ is a root of 5u4−10u2+1=0.
If cos−1x+cos−1y+cos−1z=π and x+y+z=23, then prove that x=y=z.
If sin−1x+sin−1y+sin−1z=π, prove that x4+y4+z4+4x2y2z2=2(x2y2+y2z2+z2x2).
Prove that 2α3cosec2(21tan−1βα)+2β3sec2(21tan−1αβ)=(α+β)(α2+β2).
Prove that 2tan−1[tan2αtan(4π−2β)]=tan−1[sinβ+cosαsinαcosβ].
Prove that tan−1[21cos2αsec2β+21cos2βsec2α]=tan−1[tan2(α+β)tan2(α−β)]+4π.
Express cot−1(1−x2−y2y)=2tan−14x23−4x2−tan−1x23−4x2 as a rational integral equation in x and y.
If cos2θmtan(α−θ)=cos2(α−θ)ntanθ then prove that
θ=21[α−tan−1(n+mn−m)tanα].
If sin−1ax+sin−1by=sin−1abc2 then prove that b2x2+2xya2b2−c4=c4−a2y2.
Prove that tan−1t+tan−11−t22t=tan−11−3t23t−t3, if
−31<x<31.
Prove that cos−1a−ba−x=sin−1a−bx−b if a>x>b or a<x<b.
Find all values of p and q such that cos−1p+cos−11−p+cos−11−q=43π.
Find all positive integral solution of the equation tan−1x+cot−1y=tan−13.
Solve sin−1cax+sin−1cbx=sin−1x where a2+b2=c2,c=0.
Convert the trigonometric function sin[2cos−1{cot(2tan−1x)}] into an algebraic function f(x). Then
from the algebraic function find all the values of x for which f(x) is zero. Express the value of x in
the form of a±b where a and b are rational numbers.
Solve the equation θ=tan−1(2tan2θ)−21sin−1(5+4cos2θ3sin2θ).
Solve tan−12x+tan−13x=4π.
If sin−1(x−2x2+4x3−…)+cos−1(x2−2x4+4x6+…)=2π∀0<∣x∣<2 then find x.
Find the number of real solutions for tan−1x(x+1)+sin−1x2+x+1=2π.
Solve sin−153x+cos−154x=sin−1x.
Solve sin−1(1−x)−2sin−1x=2π.
If k be a positive integer, show that the equation tan−1x+tan−1y=tan−1k has no positive
integral solution.
Solve tan−1x−1x+1+tan−1xx−1=tan−1(−7).
Solve tan−1a−11=tan−1x1+tan−1a2−x+11.
Solve cos−1x2+1x2−1+tan−1x2−12x=32π.
If θ=tan−12k−xx3 and ϕ=tan−1k32x−k, show that one
value of θ−ϕ is π/6.
Find all positive integral solutions of the equation tan−1x+cos−11+y2y=sin−1103.
Solve the equation 2cos−1x=sin−12x1−x2
Solve sin−11+x2x−sin−11+x21=sin−11+x21+x
Show that the function y=2tan−1[a+ba−btan2x]−cos−1[a+bcosxb+acosx] is a constant for 0<b≤a, find the value of this constant for x≥0.
Find the sum ∑i=1ntan−12+i2+i42i.
Find the sum of infinite terms of the series cot−1(12+43)+cot−1(22+43)+cot−1(33+43)+…
Solve for x the equation (tan−1x)2+(cot−1x)2=85π2
Show that the greatest and the least values of (sin−1x)3+(cos−1x)3 are 87π3 and
32π2 respectively.
Obtain the integral values of p for which the following system of equations possesses real solution
cos−1x+(sin−1y)2=4pπ2 and (cos−1x)(sin−1y)2=16π2.
If tan−1x,tan−1y,tan−1z be in A.P., find the algebraic relation between x,y and z.
If x,y,z be in A.P. prove that x=y=z.
Show that for x>0,tan−11+1.2x2x+tan−11+2.3x2x+…+tan−11+n(n+1)x2x=tan−11+(n+1)x2nx