26. Inverse Circular Functions Solutions#

  1. Let tan1(1)=θ\tan^{-1}(-1) = \theta then tanθ=1.\tan\theta = -1. Also, π2<θ<π2-\frac{\pi}{2}< \theta < \frac{\pi}{2}

    The only value in this range which satisfied this equation is π4.-\frac{\pi}{4}.

  2. Let cot1(1)=θ,\cot^{-1}(-1) = \theta, then cotθ=1\cot\theta = -1 and 0<θ<π0<\theta<\pi

    θ=3π4\Rightarrow \theta = \frac{3\pi}{4}

  3. Let sin1(32)=θ\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \theta then sinθ=32\sin\theta = -\frac{\sqrt{3}}{2}

    Also, π2θπ2θ=π3-\frac{\pi}{2}\leq \theta\leq \frac{\pi}{2} \Rightarrow \theta = -\frac{\pi}{3}

  4. sin[π3sin1(12)]\sin\left[\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2}\right)\right]

    =sin[π3{sin112}]=\sin\left[\frac{\pi}{3} -\{-\sin^{-1}\frac{1}{2}\}\right]

    =sin[π3+π6]=1= \sin\left[\frac{\pi}{3} + \frac{\pi}{6}\right] = 1

  5. sin[cos1(12)]=sin[πcos112]\sin\left[\cos^{-1}\left(-\frac{1}{2}\right)\right] = \sin\left[\pi - \cos^{-1}\frac{1}{2}\right]

    =sin2π3=32= \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}

  6. sin[tan1(3)+cos132]\sin\left[\tan^{-1}(-\sqrt{3}) + \cos^{-1}\frac{-\sqrt{3}}{2}\right]

    =sin[π3+ππ6]= \sin\left[-\frac{\pi}{3} + \pi- \frac{\pi}{6}\right]

    =sinπ2=1= \sin\frac{\pi}{2} = 1

  7. Given expression is tan[12cos153]\tan\left[\frac{1}{2}\cos^{-1}\frac{\sqrt{5}}{3}\right]

    Let cos153=2θ\cos^{-1}\frac{\sqrt{5}}{3} = 2\theta then cos2θ=53\cos2\theta = \frac{\sqrt{5}}{3}

    1tan2θ1+tan2θ=53\Rightarrow \frac{1 - \tan^2\theta}{1 + \tan^2\theta} = \frac{\sqrt{5}}{3}

    By componendo and dividendo 2tan2θ2=353+5\frac{2\tan^2\theta}{2} = \frac{3 - \sqrt{5}}{3 + \sqrt{5}}

    tanθ=±(352)\Rightarrow \tan\theta = \pm\left(\frac{3 - \sqrt{5}}{2}\right)

    Given 02θπ0θπ20 \leq 2\theta \leq \pi \Rightarrow 0\leq \theta \leq \frac{\pi}{2}

    i.e. θ\theta lies in first quadrant. tanθ=352\Rightarrow \tan\theta = \frac{3 - \sqrt{5}}{2}

  8. Given expression is sin1(sin2π3)\sin^{-1}\left(\sin\frac{2\pi}{3}\right)

    Let sin1(sin2π3)=θ\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \theta

    then sinθ=sin2π3\sin\theta = \sin\frac{2\pi}{3} and π2θπ2-\frac{\pi}{2}\leq\theta\leq \frac{\pi}{2}

    =sin(ππ3)=sinπ3θ=π3=\sin\left(\pi - \frac{\pi}{3}\right) = \sin\frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{3}

    sin1(sin2π3)=π3\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \frac{\pi}{3}

  9. Let sin132=θsinθ=32\sin^{-1}\frac{\sqrt{3}}{2} = \theta \Rightarrow \sin\theta = \frac{\sqrt{3}}{2}

    θ=π3\Rightarrow \theta = \frac{\pi}{3} π2θπ2-\frac{\pi}{2}\leq\theta\leq \frac{\pi}{2}

  10. Let tan113=θ\tan^{-1}\frac{-1}{\sqrt{3}} =\theta

    then tanθ=13=tan(π3)\tan\theta = \frac{-1}{\sqrt{3}} =\tan\left(\frac{-\pi}{3}\right)

    θ=π3\Rightarrow \theta = -\frac{\pi}{3}

  11. Let cot1(3)=θcotθ=3\cot^{-1}(-\sqrt{3}) = \theta \Rightarrow \cot\theta = -\sqrt{3}

    cotθ=cot(ππ6)\cot\theta = \cot\left(\pi - \frac{\pi}{6}\right)

    θ=5π6\theta = \frac{5\pi}{6}

  12. Let cot1cot5π4=θcotθ=cot(π+π4)\cot^{-1}\cot\frac{5\pi}{4} = \theta \Rightarrow \cot\theta = \cot\left(\pi + \frac{\pi}{4}\right)

    cotθ=cotπ4θ=π4\cot\theta = \cot\frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{4}

  13. Let tan1(tan3π4)=θ\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \theta

    tanθ=tan3π4=tan(ππ4)\Rightarrow \tan\theta = \tan\frac{3\pi}{4} = \tan\left(\pi - \frac{\pi}{4}\right)

    θ=π4\Rightarrow \theta = -\frac{\pi}{4}

  14. sin112+cos112=π6+π3=π2\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2} = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}

  15. Let tan1=θtanθ=34cosθ=45\tan^{-1} = \theta \Rightarrow \tan\theta = \frac{3}{4} \Rightarrow \cos\theta = \frac{4}{5}

  16. cos[cos1(32)+π6]\cos\left[\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\right]

    =cos[π6+π6]=cosπ3=12=\cos\left[\frac{\pi}{6} + \frac{\pi}{6}\right] = \cos \frac{\pi}{3} = \frac{1}{2}

  17. L.H.S. =2tan113+tan117= 2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7}

    =tan1213119+tan117= \tan^{-1}\frac{2*\frac{1}{3}}{1 - \frac{1}{9}} + \tan^{-1}\frac{1}{7}

    =tan134+tan117= \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7}

    =tan134+171328=tan11=π4== \tan^{-1}\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{28}} = \tan^{-1}1 = \frac{\pi}{4} = R.H.S.

  18. L.H.S. =tan113+tan117+tan115+tan118= \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8}

    =tan113+171121+tan115+181140= \tan^{-1}\frac{\frac{1}{3} + \frac{1}{7}}{1 - \frac{1}{21}} + \tan^{-1}\frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{40}}

    =tan112+tan113=tan11=π4== \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}1 = \frac{\pi}{4} = R.H.S.

  19. L.H.S. =sin145+sin1513+sin11665= \sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}

    =sin1(45125169+51311625)+sin11665= \sin^{-1}\left(\frac{4}{5}\sqrt{1 - \frac{25}{169}} + \frac{5}{13}\sqrt{1 - \frac{16}{25}}\right) + \sin^{-1}\frac{16}{65}

    =sin1(4865+1565)+sin11665=sin16465+sin11665= \sin^{-1}\left(\frac{48}{65} + \frac{15}{65}\right) + \sin^{-1}\frac{16}{65} = \sin^{-1}\frac{64}{65} + \sin^{-1}\frac{16}{65}

    =sin1(6365.1162652+16651632652)= \sin^{-1}\left(\frac{63}{65}.\sqrt{1 - \frac{16^2}{65^2}} + \frac{16}{65}\sqrt{1 - \frac{63^2}{65^2}}\right)

    sin1632+162652=sin1=π2=\sin^{-1}\frac{63^2 + 16^2}{65^2} = \sin^{-1} = \frac{\pi}{2} = R.H.S.

  20. We have to prove that 4tan115tan1170+tan1199=π44\tan^{-1}\frac{1}{5} - \tan^{-1}\frac{1}{70} + \tan^{-1}\frac{1}{99} = \frac{\pi}{4}

    4tan115=π4+tan1170tan1199\Rightarrow 4\tan^{-1}\frac{1}{5} = \frac{\pi}{4} + \tan^{-1}\frac{1}{70} - tan^{-1}\frac{1}{99}

    L.H.S. =4tan115=2tan12.151125=2tan1512= 4\tan^{-1}\frac{1}{5} = 2\tan^{-1}\frac{2.\frac{1}{5}}{1 - \frac{1}{25}} = 2\tan^{-1}\frac{5}{12}

    =tan12.512125144=tan1120119= \tan^{-1}\frac{2.\frac{5}{12}}{1 - \frac{25}{144}} = \tan^{-1}\frac{120}{119}

    tan1170tan1199=tan11701991+170.199\tan^{-1}\frac{1}{70} - \tan^{-1}\frac{1}{99} = \tan^{-1}\frac{\frac{1}{70} - \frac{1}{99}}{1 + \frac{1}{70}.\frac{1}{99}}

    =tan11239= \tan^{-1}\frac{1}{239}

    R.H.S. =tan11+tan11239=tan1120119= \tan^{-1}1 + \tan^{-1}\frac{1}{239} = \tan^{-1}\frac{120}{119}

    Thus, L.H.S. = R.H.S.

  21. We have to prove that cot19+cosec1414=π4\cot^{-1}9 + \cosec^{-1}\frac{\sqrt{41}}{4} = \frac{\pi}{4}

    cot19=tan119\cot^{-1}9 = \tan^{-1}\frac{1}{9}

    Let cosec1414=θcosecθ=414\cosec^{-1}\frac{\sqrt{41}}{4} = \theta \Rightarrow \cosec\theta = \frac{\sqrt{41}}{4}

    Since we have to consider principal values only π2θπ2-\frac{\pi}{2}\leq \theta\leq \frac{\pi}{2} and θ0\theta \neq 0

    As cosecθ\cosec\theta is +ve here, θ\theta lies between 00 and π/2,\pi/2, hence tanθ\tan\theta must be positive.

    tanθ=45\Rightarrow \tan\theta = \frac{4}{5}

    tan119+tan145=tan119+4511945\tan^{-1}\frac{1}{9} + \tan^{-1}\frac{4}{5} = \tan^{-1}\frac{\frac{1}{9} + \frac{4}{5}}{1 - \frac{1}{9}\frac{4}{5}}

    =tan14145.4541=tan11=π4==\tan^{-1}\frac{41}{45}.\frac{45}{41} = \tan^{-1}1 = \frac{\pi}{4} = R.H.S.

  22. We have to prove that 4(cot13+cosec15)=π4(\cot^{-1}3 + \cosec^{-1}\sqrt{5}) = \pi

    cot13=tan113\cot^{-1}3 = \tan^{-1}\frac{1}{3}

    cosec15=tan112\cosec^{-1}\sqrt{5} = \tan^{-1}\frac{1}{2}

    L.H.S. =4(tan113+tan112)=4(tan112+13112.13)=4(\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}) = 4\left(\tan^{-1}\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2}.\frac{1}{3}}\right)

    =4tan11=π== 4\tan^{-1}1 = \pi = R.H.S.

  23. We have to prove that tan1x=2tan1[cosectan1xtancot1x]\tan^{-1}x = 2\tan^{-1}[\cosec\tan^{-1}x - \tan\cot^{-1}x]

    R.H.S. =2tan1[coseccosec11+x2xtantan11x]= 2\tan^{-1}[\cosec\cosec^{-1}\frac{\sqrt{1 + x^2}}{x} - \tan\tan^{-1}\frac{1}{x}]

    =2tan1(1+x21x)= 2\tan^{-1}\left(\frac{\sqrt{1 + x^2} - 1}{x}\right)

    Let x=tanθ,x = \tan\theta, then R.H.S. =2tan1(secθ1tanθ)= 2\tan^{-1}\left(\frac{sec\theta - 1}{\tan\theta}\right)

    =2tan1(1cosθsinθ)=2tan1(2sin2θ22sinθ2cosθ2)=2\tan^{-1}\left(\frac{1 - \cos\theta}{\sin\theta}\right) = 2\tan^{-1}\left(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right)

    =2tan1.tanθ2=θ=tan1x== 2\tan^{-1}.\tan\frac{\theta}{2} = \theta = tan^{-1}x = L.H.S.

  24. 0<baaba+b\because 0 < b \leq a \therefore \sqrt{\frac{a - b}{a + b}} is real.

    L.H.S. =2tan1[aba+btanx2]= 2\tan^{-1}\left[\sqrt{\frac{a - b}{a + b}}\tan\frac{x}{2}\right]

    =cos1[1aba+btan2x21+aba+btan2x2]= \cos^{-1}\left[\frac{1 - \frac{a- b}{a + b}\tan^2\frac{x}{2}}{1 + \frac{a - b}{a + b}\tan^2\frac{x}{2}}\right]

    =cos1[a(1tan2x2)+b(1+tan2x2)a(1+tan2x2)+b(1+tan2x2)]= \cos^{-1}\left[\frac{a\left(1 - \tan^2\frac{x}{2}\right)+ b\left(1 + \tan^2\frac{x}{2}\right)}{a\left(1 + \tan^2\frac{x}{2}\right)+ b\left(1 + \tan^2\frac{x}{2}\right)}\right]

    =cos1[a(1tan2x21+tan2x2+b)a+b1tan2x21+tan2x2]= \cos^{-1}\left[\frac{a\left(\frac{1 - \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2} + b}\right)}{a + b\frac{1 - \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2}}}\right]

    =cos1[b+acosxa+bcosx]== \cos^{-1}\left[\frac{b + a\cos x}{a + b\cos x}\right] = R.H.S.

  25. L.H.S =tan1xy1+xy+tan1yz1+yz+tan1zx1+zx= \tan^{-1}\frac{x - y}{1 + xy} + \tan^{-1}\frac{y - z}{1 + yz} + \tan^{-1}\frac{z - x}{1 + zx}

    =tan1xtan1y+tan1ytan1z+tan1ztan1x=0= \tan^{-1}x - \tan^{-1}y + \tan^{-1}y - \tan^{-1}z + \tan^{-1}z - \tan^{-1}x = 0

    R.H.S. =tan1(x2y21+x2y2)+tan1(y2z21+y2z2)+tan1(z2x21+z2x2)= \tan^{-1}\left(\frac{x^2 - y^2}{1 + x^2y^2}\right) + \tan^{-1}\left(\frac{y^2 - z^2}{1 + y^2z^2}\right) + \tan^{-1}\left(\frac{z^2 - x^2}{1 + z^2x^2}\right)

    =tan1x2tan1y2+tan1y2tan1z2+tan1z2tan1x2=0= \tan^{-1}x^2 - \tan^{-1}y^2 + \tan^{-1}y^2 - \tan^{-1}z^2 + \tan^{-1}z^2 - \tan^{-1}x^2 = 0

    \therefore L.H.S. = R.H.S.

  26. We have to prove that sincot1tancos1x=x\sin\cot^{-1}\tan\cos^{-1}x = x

    L.H.S. =sincot1tantan11x2x= \sin\cot^{-1}\tan\tan^{-1}\frac{\sqrt{1 - x^2}}{x}

    =sincot11x2x= \sin\cot^{-1}\frac{\sqrt{1 - x^2}}{x}

    Let cot11x2x=θ\cot^{-1}\frac{1 - x^2}{x} = \theta then cotθ=1x2x\cot\theta = \frac{\sqrt{1 - x^2}}{x}

    sinθ=x\sin\theta = x

    Thus, L.H.S. = R.H.S.

  27. Case I: When π4<x<π2\frac{\pi}{4}<x<\frac{\pi}{2}

    0<cotx<10<\cot x< 1 and 0<cot3x<10<cotxcot3x<10<\cot^3x<1 \therefore 0<\cot x\cot^3x<1

    tan1cotx+tan1cot3x=tan1cotx+cot3x1cotxcot3x\tan^{-1}\cot x + \tan^{-1}\cot^3x =\tan^{-1}\frac{\cot x + \cot^3x}{1 - \cot x\cot^3x}

    =tan1cotx1cot2x=tan1tanxtan21=\tan^{-1}\frac{\cot x}{1 - \cot^2x} = \tan^{-1}\frac{\tan x}{\tan^2 - 1}

    =tan1(12tan2x)= -\tan^{-1}\left(\frac{1}{2}\tan 2x\right)

    tan1(12tan2x)+tan1cotx+tan1cot3x=0\Rightarrow \tan^{-1}\left(\frac{1}{2}\tan 2x\right) + \tan^{-1}\cot x + \tan^{-1}\cot^3x = 0

    Case II: When 0<x<π40<x<\frac{\pi}{4}

    cotx>1\cot x> 1 and cot3x>1\cot^3x > 1

    tan1cotx+tan1cot3x=πtan1(12tan2x)\Rightarrow \tan^{-1}\cot x + \tan^{-1}\cot^3x = \pi - \tan^{-1}\left(\frac{1}{2}\tan2x\right)

    tan1(12tan2x)+tan1cotx+tan1cot3x=π\Rightarrow \tan^{-1}\left(\frac{1}{2}\tan 2x\right) + \tan^{-1}\cot x + \tan^{-1}\cot^3x = \pi

  28. tan112+tan113=tan112+13112.13\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2}.\frac{1}{3}}

    =tan15/65/6=tan11=π4= \tan^{-1}\frac{5/6}{5/6} = \tan^{-1}1 = \frac{\pi}{4}

    tan135+tan114=tan135+14135.14\tan^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{4} = \tan^{-1}\frac{\frac{3}{5} + \frac{1}{4}}{1 - \frac{3}{5}.\frac{1}{4}}

    =tan117/2017/20=tan11=π4=\tan^{-1}\frac{17/20}{17/20} = \tan^{-1}1 = \frac{\pi}{4}

  29. We have to prove that tan12ab3b+tan12ba3a=π3\tan^{-1}\frac{2a - b}{\sqrt{3}b} + \tan^{-1}\frac{2b - a}{\sqrt{3}a} = \frac{\pi}{3}

    L.H.S. =tan12ab3b+2ba3a1(2ab)(2ba)3ab= \tan^{-1}\frac{\frac{2a - b}{\sqrt{3}b} + \frac{2b - a}{\sqrt{3}a}}{1 - \frac{(2a - b)(2b - a)}{3ab}}

    =tan123a23ab+23b23ab3ab3ab4ab+2a2+2b2ab3ab= \tan^{-1}\frac{\frac{2\sqrt{3}a^2 - \sqrt{3}ab + 2\sqrt{3}b^2 -\sqrt{3}ab}{3ab}}{\frac{3ab - 4ab + 2a^2 + 2b^2 - ab}{3ab}}

    =tan12a2+23b223ab2a2+2b22ab=tan13=π3= \tan^{-1}\frac{2\sqrt{a^2} + 2\sqrt{3}b^2 - 2\sqrt{3}ab}{2a^2 + 2b^2 - 2ab} = \tan^{-1}\sqrt{3} = \frac{\pi}{3}

  30. We have to prove that tan125+tan113+tan1112=π4\tan^{-1}\frac{2}{5} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{12} = \frac{\pi}{4}

    L.H.S. =tan125+tan113+112113.112= \tan^{-1}\frac{2}{5} + \tan^{-1}\frac{\frac{1}{3} + \frac{1}{12}}{1 - \frac{1}{3}.\frac{1}{12}}

    =tan125+tan15/1235/36=tan125+tan137= \tan^{-1}\frac{2}{5} + \tan^{-1}\frac{5/12}{35/36} = \tan^{-1}\frac{2}{5} + \tan^{-1}\frac{3}{7}

    =tan125+37125.37= \tan^{-1}\frac{\frac{2}{5} + \frac{3}{7}}{1 - \frac{2}{5}.\frac{3}{7}}

    =tan129/3529/35=tan11=π4= \tan^{-1}\frac{29/35}{29/35} = \tan^{-1}1 = \frac{\pi}{4}

  31. We have to prove that 2tan115+tan114=tan132432\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{4} = \tan^{-1}\frac{32}{43}

    L.H.S. =tan12.151152+tan114= \tan^{-1}\frac{2.\frac{1}{5}}{1 - \frac{1}{5^2}} + \tan^{-1}\frac{1}{4}

    =tan1512+tan114= \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{1}{4}

    =tan1512+141512.14= \tan^{-1}\frac{\frac{5}{12} + \frac{1}{4}}{1 - \frac{5}{12}.\frac{1}{4}}

    =tan12/343/48=tan13243= \tan^{-1}\frac{2/3}{43/48} = \tan^{-1}\frac{32}{43}

  32. We have to prove that tan11+tan12+tan13=π=2(tan11+tan112+tan113)\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi = 2\left(\tan^{-1}1 + \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}\right)

    tan11+tan12+tan13=tan11+tan12+312.3=tan11+tan1(1)\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \tan^{-1}1 + \tan^{-1}\frac{2 + 3}{1 - 2.3} = \tan^{-1}1 + \tan^{-1}(-1)

    =tan1111+1=tan10=nπ= \tan^{-1}\frac{1 - 1}{1 + 1} =\tan^{-1}0 = n\pi

    2(tan11+tan112+tan113)2\left(\tan^{-1}1 + \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}\right)

    =2(tan11+tan112+12112.13)= 2\left(\tan^{-1}1 + \tan^{-1}\frac{\frac{1}{2} + \frac{1}{2}}{1 - \frac{1}{2}.\frac{1}{3}}\right)

    =2(π4+tan11)=2.π2=π= 2\left(\frac{\pi}{4} + \tan^{-1}1\right) = 2.\frac{\pi}{2} = \pi

    Thus, the above expression will have principal value as pi.pi.

  33. We have to prove that tan1x+cot1y=tan1xy+1yx\tan^{-1}x + \cot^{-1}y = \tan^{-1}\frac{xy + 1}{y - x}

    L.H.S. =tan1x+cot1y=tan1x+tan11y= \tan^{-1}x + \cot^{-1}y = \tan^{-1}x + \tan^{-1}\frac{1}{y}

    =tan1x+1y1x.1y=tan1xy+1yx= \tan^{-1}\frac{x + \frac{1}{y}}{1 - x.\frac{1}{y}} = \tan^{-1}\frac{xy + 1}{y - x}

  34. We have to prove that tan11x+y+tan1yx2+xy+1=cot1x\tan^{-1}\frac{1}{x + y} + \tan^{-1}\frac{y}{x^2 + xy + 1} = \cot^{-1}x

    L.H.S. =tan11x+y+tan1yx2+xy+1= \tan^{-1}\frac{1}{x + y} + \tan^{-1}\frac{y}{x^2 + xy + 1}

    =tan11x+y+yx2+xy+111x+y.yx2+xy+1= \tan^{-1}\frac{\frac{1}{x + y} + \frac{y}{x^2 + xy + 1}}{1 - \frac{1}{x + y}.\frac{y}{x^2 + xy + 1}}

    =tan1x2+2xy+y2+1x3+2x2y+xy2+x=tan11x=cot1x= \tan^{-1}\frac{x^2 + 2xy + y^2 + 1}{x^3 + 2x^2y + xy^2 + x} = \tan^{-1}\frac{1}{x} = \cot^{-1}x

  35. We have to prove that 2cot15+cot17+2cot18=π/42\cot^{-1}5 + \cot^{-1}7 + 2\cot^{-1}8 = \pi/4

    We know that cot1x+cot1y=xy1x+y\cot^{-1}x + \cot^{-1}y = \frac{xy - 1}{x + y}

    2(cot15+cot18)=2cot13913=2cos13=cot143\therefore 2\left(\cot^{-1}5 + \cot^{-1}8\right) = 2\cot^{-1}\frac{39}{13} = 2\cos^{-1}3 = \cot^{-1}\frac{4}{3}

    2cot15+cot17+2cot18=cot143+cot17\therefore 2\cot^{-1}5 + \cot^{-1}7 + 2\cot^{-1}8 = \cot^{-1}\frac{4}{3} + \cot^{-1}7

    =cot12831253=cot11=π/4=\cot^{-1}\frac{\frac{28}{3} - 1}{\frac{25}{3}} = \cot^{-1}1 = \pi/4

  36. We have to prove that tan1ab1+ab+tan1bc1+bc+tan1ca1+ca=0\tan^{-1}\frac{a - b}{1 + ab} + \tan^{-1}\frac{b - c}{1 + bc} + \tan^{-1}\frac{c - a}{1 + ca} = 0

    L.H.S. =tan1atan1b+tan1btan1c+tan1ctan1a=0= \tan^{-1}a - \tan^{-1}b + \tan^{-1}b - \tan^{-1}c + \tan^{-1}c - \tan^{-1}a = 0

  37. We have to prove that tan1a3b31+a3b3+tan1b3c31+b3c3+tan1c3a31+c3a3=0\tan^{-1}\frac{a^3 - b^3}{1 + a^3b^3} + \tan^{-1}\frac{b^3 - c^3}{1 + b^3c^3} + \tan^{-1}\frac{c^3 - a^3}{1 + c^3a^3} = 0

    L.H.S. =tan1a3tan1b3+tan1b3tan1c3+tan1c3tan1a3=0= \tan^{-1}a^3 - \tan^{-1}b^3 + \tan^{-1}b^3 - \tan^{-1}c^3 + \tan^{-1}c^3 - \tan^{-1}a^3 = 0

  38. We have to prove that cot1xy+1yx+cot1yz+1zy+cot1z=tan11x\cot^{-1}\frac{xy + 1}{y - x} + \cot^{-1}\frac{yz + 1}{z - y} + \cot^{-1}z = \tan^{-1}\frac{1}{x}

    L.H.S. =cot1xcot1y+cot1ycot1z+cot1z=cot1x=tan11x= \cot^{-1}x - \cot^{-1}y + \cot^{-1}y - \cot^{-1}z + \cot^{-1}z= \cot^{-1}x = \tan^{-1}\frac{1}{x}

  39. We have to prove that cos1(cosθ+cosϕ1+cosθcosϕ)=2tan1(tanθ2tanϕ2)\cos^{-1}\left(\frac{\cos\theta + \cos\phi}{1 + \cos\theta\cos\phi}\right) = 2\tan^{-1}\left(\tan\frac{\theta}{2}\tan\frac{\phi}{2}\right)

    L.H.S. =cos1(cosθ+cosϕ1+cosθcosϕ)= \cos^{-1}\left(\frac{\cos\theta + \cos\phi}{1 + \cos\theta\cos\phi}\right)

    =tan11+cos2θcos2ϕ+2cosθcosϕcos2θcos2ϕ2cosθcosϕcosθ+cosϕ= \tan^{-1}\frac{\sqrt{1 + \cos^2\theta\cos^2\phi + 2\cos\theta\cos\phi - \cos^2\theta\cos^2\phi - 2\cos\theta\cos\phi}}{\cos\theta + \cos\phi}

    =tan1(1cos2θ)(1cos2ϕ)cosθ+cosϕ=tan1sinθsinϕcosθ+cosϕ= \tan^{-1}\frac{\sqrt{(1 - \cos^2\theta)(1 - \cos^2\phi)}}{\cos\theta + \cos\phi} = \tan^{-1}\frac{\sin\theta\sin\phi}{\cos\theta + \cos\phi}

    R.H.S. =2tan1(tanθ2tanϕ2)= 2\tan^{-1}\left(\tan\frac{\theta}{2}\tan\frac{\phi}{2}\right)

    =tan12tanθ2tanϕ21tan2θ2tan2ϕ2= \tan^{-1}\frac{2\tan\frac{\theta}{2}\tan\frac{\phi}{2}}{1 - \tan^2\frac{\theta}{2}\tan^2\frac{\phi}{2}}

    =tan12tanθ2tanϕ2.cos2θ2cos2ϕ2cos2θ2cos2ϕ2sin2θ2sin2ϕ2=\tan^{-1}\frac{2\tan\frac{\theta}{2}\tan\frac{\phi}{2}.\cos^2\frac{\theta}{2}\cos^2\frac{\phi}{2}}{\cos^2\frac{\theta}{2}\cos^2\frac{\phi}{2} - \sin^2\frac{\theta}{2}\sin^2\frac{\phi}{2}}

    =tan112.sinθsinϕcos2θ2cos2ϕ2(1cos2θ2)(1cos2ϕ2)= \tan^{-1}\frac{1}{2}.\frac{\sin\theta\sin\phi}{\cos^2\frac{\theta}{2}\cos^2\frac{\phi}{2} - \left(1 - \cos^2\frac{\theta}{2}\right)\left(1-\cos^2\frac{\phi}{2}\right)}

    =tan1sinθsinϕcosθ+cosϕ= \tan^{-1}\frac{\sin\theta\sin\phi}{\cos\theta + \cos\phi}

  40. We have to prove that sin135+sin1817=sin17785\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}

    L.H.S. =sin135+sin1817= \sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17}

    =sin1(35182172+81713252)=\sin^{-1}\left(\frac{3}{5}\sqrt{1 - \frac{8^2}{17^2}} + \frac{8}{17}\sqrt{1 - \frac{3^2}{5^2}}\right)

    =sin1(35.1517+817.45)= \sin^{-1}\left(\frac{3}{5}.\frac{15}{17} + \frac{8}{17}.\frac{4}{5}\right)

    sin1(45+3285)=sin17785=\sin^{-1}\left(\frac{45 + 32}{85}\right) = \sin^{-1}\frac{77}{85} = R.H.S.

  41. We have to prove that cos135+cos11213+cos16365=π2\cos^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} + \cos^{-1}\frac{63}{65} = \frac{\pi}{2}

    We know that cos1x+cos1y=xy(1x2)(1y2)\cos^{-1}x + \cos^{-1}y = xy - \sqrt{(1 - x^2)(1 - y^2)}

    L.H.S. =cos135+cos11213+cos16365= \cos^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} + \cos^{-1}\frac{63}{65}

    =cos1(35.1213(13252)(1122132))+cos16365= \cos^{-1}\left(\frac{3}{5}.\frac{12}{13} - \sqrt{\left(1 - \frac{3^2}{5^2}\right)\left(1 - \frac{12^2}{13^2}\right)}\right) + \cos^{-1}\frac{63}{65}

    =cos1(366545.513)+cos16365= \cos^{-1}\left(\frac{36}{65} - \frac{4}{5}.\frac{5}{13}\right) + \cos^{-1}\frac{63}{65}

    =cos1(36652065)+cos16365= \cos^{-1}\left(\frac{36}{65} - \frac{20}{65}\right) + \cos^{-1}\frac{63}{65}

    =cos11665+cos16365= \cos^{-1}\frac{16}{65} + \cos^{-1}\frac{63}{65}

    =cos1(1665.6364(1162652)(1632652))= \cos^{-1}\left(\frac{16}{65}.\frac{63}{64} - \sqrt{\left(1 - \frac{16^2}{65^2}\right)\left(1 - \frac{63^2}{65^2}\right)}\right)

    =cos10=π2== \cos^{-1}0 = \frac{\pi}{2} = R.H.S.

  42. We have to prove that sin1x+sin1y=cos1(1x21y2xy)\sin^{-1}x + \sin^{-1}y = \cos^{-1}\left(\sqrt{1 - x^2}\sqrt{1 - y^2} - xy\right)

    L.H.S. =sin1x+sin1y=cos11x2+cos11y2= \sin^{-1}x + \sin^{-1}y = \cos^{-1}\sqrt{1 - x^2} + \cos^{-1}\sqrt{1 - y^2}

    =cos1(1x21y2[1(1x2)][1(1y2)])= \cos^{1-}(\sqrt{1 - x^2}\sqrt{1 - y^2} - \sqrt{[1 - (1 - x^2)][1 - (1 - y^2)]})

    =cos1(1x21y2xy)== \cos^{-1}\left(\sqrt{1 - x^2}\sqrt{1 - y^2} - xy\right) = R.H.S.

  43. We have to prove that 4(sin1110+cos125)=π4\left(\sin^{-1}\frac{1}{\sqrt{10}} + \cos^{-1}\frac{2}{\sqrt{5}}\right) =\pi

    or sin1110+cos125=π/4\sin^{-1}\frac{1}{\sqrt{10}} + \cos^{-1}\frac{2}{\sqrt{5}} =\pi/4

    L.H.S. =sin1110+sin115= \sin^{-1}\frac{1}{\sqrt{10}} + \sin^{-1}\frac{1}{\sqrt{5}}

    =sin1(110115+151110)= \sin^{-1}\left(\frac{1}{\sqrt{10}}\sqrt{1 - \frac{1}{5}} + \frac{1}{\sqrt{5}}\sqrt{1 - \frac{1}{10}}\right)

    =sin1(250+350)=sin112= \sin^{-1}\left(\frac{2}{\sqrt{50}} + \frac{3}{\sqrt{50}}\right) = \sin^{-1}\frac{1}{\sqrt{2}}

    =π4== \frac{\pi}{4} = R.H.S.

  44. We have to prove that cos(2sin1x)=12x2\cos(2\sin^{-1}x) = 1 - 2x^2

    L.H.S. =cos[sin1(2x1x2)]=cos[cos114x2(1x2)]=cos[cos1(12x2)]= \cos[\sin^{-1}(2x\sqrt{1 - x^2})] = \cos[\cos^{-1}\sqrt{1 - 4x^2(1 - x^2)}] = \cos[\cos^{-1}(1 - 2x^2)]

    =12x2== 1 - 2x^2 = R.H.S.

  45. We have to prove that 12cos1x=sin11x2=cos11+x2=tan11x21+x\frac{1}{2}\cos^{-1}x = \sin^{-1}\sqrt{\frac{1 - x}{2}} = \cos^{-1}\sqrt{\frac{1 + x}{2}} = \tan^{-1}\frac{\sqrt{1 - x^2}}{1 + x}

    or cos1x=2sin11x2=2cos11+x2=2tan11x21+x\cos^{-1}x = 2\sin^{-1}\sqrt{\frac{1 - x}{2}} = 2\cos^{-1}\sqrt{\frac{1 + x}{2}} = 2\tan^{-1}\frac{\sqrt{1 - x^2}}{1 + x}

    2sin11x2=sin1[2.1x2.11x2]2\sin^{-1}\sqrt{\frac{1 - x}{2}} = \sin^{-1}\left[2.\sqrt{\frac{1 - x}{2}}.\sqrt{1 - \frac{1 - x}{2}}\right]

    =sin12.1x2.1+x2=sin11x2=cos1x= \sin^{-1}2.\sqrt{\frac{1 - x}{2}}.\sqrt{\frac{1 + x}{2}} = \sin^{-1}\sqrt{1 - x^2} = \cos^{-1}x

    2cos11+x2=cos1[2.1+x21][2cos1x=cos1(2x21)]2\cos^{-1}\sqrt{\frac{1 + x}{2}} = \cos^{-1}\left[2.\frac{1 + x}{2} - 1\right][\because 2\cos^{-1}x = \cos^{-1}(2x^2 - 1)]

    =cos1x= \cos^{-1}x

    2tan11x21+x=tan12.1x2(1+x)11x2(1+x)22\tan^{-1}\frac{\sqrt{1 - x^2}}{1 + x} = \tan^{-1}\frac{2.\frac{\sqrt{1 - x^2}}{(1 + x)}}{1 - \frac{1 - x^2}{(1 + x)^2}}

    =tan11x2x=cos1x= \tan^{-1}\frac{\sqrt{1 - x^2}}{x} = \cos^{-1}x

  46. We have to prove that sin1x+cos1y=tan1xy+(1x2)(1y2)y1x2x1y2\sin^{-1}x + \cos^{-1}y = \tan^{-1}\frac{xy + \sqrt{(1 - x^2)(1 - y^2)}}{y\sqrt{1 - x^2} - x\sqrt{1 - y^2}}

    L.H.S. =sin1x+cos1y=sin1x+sin11y2= \sin^{-1}x + \cos^{-1}y = \sin^{-1}x + \sin^{-1}\sqrt{1 - y^2}

    =sin1[x1(1y2)+1y21x2]= \sin^{-1}[x\sqrt{1 -(1 - y^2)} + \sqrt{1 - y^2}\sqrt{1 - x^2}]

    =tan1xy+1x21y21(xy+1x2(1y2))2=\tan^{-1}\frac{xy + \sqrt{1 - x^2}\sqrt{1 - y^2}}{\sqrt{1 - (xy + \sqrt{1 - x^2}(1 - y^2))^2}}

    =tan1xy+1x21y21x2y2(1x2)(1y2)2xy1x21y2=\tan^{-1}\frac{xy + \sqrt{1 - x^2}\sqrt{1 - y^2}}{\sqrt{1 - x^2y^2 - (1 - x^2)(1 - y^2) - 2xy\sqrt{1 - x^2}\sqrt{1 - y^2}}}

    =tan1xy+1x21y2x2+y22xy1x21y62= \tan^{-1}\frac{xy + \sqrt{1 - x^2}\sqrt{1 - y^2}}{\sqrt{x^2 + y^2 - 2xy\sqrt{1 - x^2}\sqrt{1 - y62}}}

    =tan1xy+(1x2)(1y2)y1x2x1y2= \tan^{-1}\frac{xy + \sqrt{(1 - x^2)(1 - y^2)}}{y\sqrt{1 - x^2} - x\sqrt{1 - y^2}}

  47. We have to prove that tan1x+tan1y=12sin12(x+y)(1xy)(1+x2)(1+y2)\tan^{-1}x + \tan^{-1}y = \frac{1}{2}\sin^{-1}\frac{2(x + y)(1 - xy)}{(1 + x^2)(1 + y^2)}

    or 2(tan1x+tan1y=sin12(x+y)(1xy)(1+x2)(1+y2)2(\tan^{-1}x + \tan^{-1}y = \sin^{-1}\frac{2(x + y)(1 - xy)}{(1 + x^2)(1 + y^2)}

    L.H.S. 2tan1x+y1xy=tan12.x+y1xy1(x+y)2(1xy)22\tan^{-1}\frac{x + y}{1 - xy} = \tan^{-1}\frac{2.\frac{x + y}{1 - xy}}{1 - \frac{(x + y)^2}{(1 - xy)^2}}

    =tan12(x+y)(1xy)(1+x2y22xyx2Y22xy)= \tan^{-1}\frac{2(x + y)(1 - xy)}{(1 + x^2y^2 - 2xy - x^2 - Y^2 - 2xy)}

    =sin12(x+y)(1xy)4(x+y)2(1xy)2+(1+2x2y24xyx2y2)2= \sin^{-1}\frac{2(x + y)(1 - xy)}{\sqrt{4(x + y)^2(1 - xy)^2 + (1 + 2x^2y^2 - 4xy - x^2 - y^2)^2}}

    =sin12(x+y)(1xy)(1+x2)(1+y2)= \sin^{-1}\frac{2(x + y)(1 - xy)}{(1 + x^2)(1 + y^2)}

  48. We have to prove that 2tan1(cosectan1xtancot1x)=tan1x2\tan^{-1}(\cosec\tan^{-1}x - \tan\cot^{-1}x) = \tan^{-1}x

    L.H.S. =2tan1(cosectan1xtancot1x)= 2\tan^{-1}(\cosec\tan^{-1}x - \tan\cot^{-1}x)

    =2tan1(coseccosec11+x2xtantan11x)= 2\tan^{-1}\left(\cosec\cosec^{-1}\frac{\sqrt{1 + x^2}}{x} - \tan\tan^{-1}\frac{1}{x}\right)

    =2tan1(1+x2x1x)=2tan11+x21x= 2\tan^{-1}\left(\frac{\sqrt{1 + x^2}}{x} - \frac{1}{x}\right) = 2\tan^{-1}\frac{\sqrt{1 + x^2} - 1}{x}

    =tan12.1+x21x1(1+x21x)2= \tan^{-1}\frac{2.\frac{\sqrt{1 + x^2} - 1}{x}}{1 - \left(\frac{\sqrt{1 + x^2} - 1}{x}\right)^2}

    =tan1x= \tan^{-1}x

  49. We have to prove that costan1sincot1x=x2+1x2+2\cos\tan^{-1}\sin\cot^{-1}x = \sqrt{\frac{x^2 + 1}{x^2 + 2}}

    L.H.S. =costan1sincot1x=costan1sinsin111+x2= \cos\tan^{-1}\sin\cot^{-1}x = \cos\tan^{-1}\sin\sin^{-1}\frac{1}{\sqrt{1 + x^2}}

    =costan111+x2=coscos11+x2x2+2= \cos\tan^{-1}\frac{1}{\sqrt{1 + x^2}} = \cos\cos^{-1}\frac{\sqrt{1 + x^2}}{\sqrt{x^2 + 2}}

    =x2+1x2+2= \sqrt{\frac{x^2 + 1}{x^2 + 2}}

  50. Clearly in a triangle A+B+C=πA + B + C = \pi where A,B,CA, B, C are angled of the triangle.

    Thus, πC=A+B\pi - C = A + B

    Given A+B=tan12+tan13=tan12+312.3=tan11=3π4A + B = \tan^{-1}2 + \tan^{-1}3 = \tan^{-1}\frac{2 + 3}{1 - 2.3} = \tan^{-1}-1 = \frac{3\pi}{4}

    C=π3π/4=π/4C = \pi - 3\pi/4 = \pi/4

  51. Given cos1x+cos1y+cos1z=π\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi

    cos1x+cos1y=πcos1z\Rightarrow \cos^{-1}x + \cos^{-1}y = \pi - \cos^{-1}z

    xy1x21y2=cos(πcos1z)=z\Rightarrow xy - \sqrt{1 - x^2}\sqrt{1 - y^2} = \cos(\pi - \cos^{-1}z) = -z

    xy+z=1x21y2\Rightarrow xy + z = \sqrt{1 - x^2}\sqrt{1 - y^2}

    Squaring, we get

    x2y2+z2+2xyz=1x2y2+x2y2x^2y^2 + z^2 + 2xyz = 1 - x^2 - y^2 + x^2y^2

    x2+y2+z2+2xyz=1\Rightarrow x^2 + y^2 + z^2 + 2xyz = 1

  52. Given cos1x2+cos1y3=θ\cos^{-1}\frac{x}{2}+ \cos^{-1}\frac{y}{3} = \theta

    cos1[xy6(4x2)(9y2)6]=θ\Rightarrow \cos^{-1}\left[\frac{xy}{6} - \frac{\sqrt{(4 - x^2)(9 - y^2)}}{6}\right] = \theta

    xy6cosθ=(4x2)(9y2)\Rightarrow xy - 6\cos\theta = \sqrt{(4 - x^2)(9 - y^2)}

    Squaring, we get

    x2y2+36cos2θ12xycosθ=369x24y2+x2y2x^2y^2 + 36\cos^2\theta - 12xy\cos\theta = 36 -9x^2 - 4y^2 + x^2y^2

    9x212xycosθ+4y2=36sin2θ\Rightarrow 9x^2 - 12xy\cos\theta + 4y^2 = 36\sin^2\theta

  53. Let xryz=a,yrzx=b\sqrt{\frac{xr}{yz}} = a, \sqrt{\frac{yr}{zx}} = b and zrxy=c\sqrt{\frac{zr}{xy}} = c

    Then, L.H.S. =tan1a+tan1b+tan1c=a+b+cabc1abbcca= \tan^{-1}a + \tan^{-1}b + \tan^{-1}c = \frac{a + b + c- abc}{1 - ab - bc - ca}

    Now, a+b+cabc=xr+yr+zrxyzrrxyza + b + c - abc = \frac{x\sqrt{r} + y\sqrt{r} + z\sqrt{r}}{\sqrt{xyz}} - \frac{r\sqrt{r}}{\sqrt{xyz}}

    =r(x+y+z)rrxyz=0= \frac{\sqrt{r}(x + y + z) - r\sqrt{r}}{\sqrt{xyz}} = 0

    and, 1abbcca=1r[1x+1y+1z]0[1x+1y+1z1r]1 - ab - bc - ca = 1- r\left[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right]\neq 0[\because \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\neq \frac{1}{r}]

    \Rightarrow L.H.S. =0=nπ= 0 = n\pi and hence principal value is π\pi because sum of three positive angles cannot be zero or negative.

  54. Given u=cot1cos2θtan1cos2θu = \cot^{-1}\sqrt{\cos2\theta} - \tan^{-1}\sqrt{\cos2\theta}

    sinu=sin[cot1cos2θtan1cos2θ]\sin u = \sin[\cot^{-1}\sqrt{\cos2\theta} - \tan^{-1}\sqrt{\cos2\theta}]

    =sin[tan11cos2θtan1cos2θ]= \sin\left[\tan^{-1}\frac{1}{\sqrt{\cos2\theta}} - \tan^{-1}\sqrt{\cos2\theta}\right]

    =sin[tan11cos2θcos2θ1+1]=\sin\left[\tan^{-1}\frac{\frac{1}{\sqrt{\cos2\theta}} - \sqrt{\cos2\theta}}{1 + 1}\right]

    =sin[tan1122sin2θcos2θ]=\sin\left[\tan^{-1}\frac{1}{2}\frac{2\sin^2\theta}{\sqrt{\cos2\theta}}\right]

    =sin[sin1sin2θsin4θ+cos2θ]= \sin\left[\sin^{-1}\frac{\sin^2\theta}{\sqrt{\sin^4\theta + \cos2\theta}}\right]

    =sin[sin1sin2θ(1sin2θ)]=sinsin1tan2θ=tan2θ= \sin\left[\sin^{-1}\frac{\sin^2\theta}{(1 - \sin^2\theta)}\right] = \sin\sin^{-1}\tan^2\theta = \tan^2\theta

  55. Given cos1x3+cos1x=π2\cos^{-1}x\sqrt{3} + \cos^{-1}x = \frac{\pi}{2}

    cos1x3=π2cos1xcoscos1x3=cos(π2cos1x)\cos^{-1}x\sqrt{3} = \frac{\pi}{2} - \cos^{-1}x \Rightarrow \cos\cos^{-1}x\sqrt{3} = \cos\left(\frac{\pi}{2} - \cos^{-1}x\right)

    x3=sincos1x=sinsin11x2\Rightarrow x\sqrt{3} = \sin\cos^{-1}x = \sin\sin^{-1}\sqrt{1 - x^2}

    x3=1x2\Rightarrow x\sqrt{3} = \sqrt{1 - x^2}

    3x2=1x2x=±12\Rightarrow 3x^2 = 1 - x^2 \Rightarrow x = \pm\frac{1}{2}

    Case I: When x=12,x = \frac{1}{2}, given equation becomes

    cos132+cos112=π6+π3=π2\cos^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{1}{2} = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}

    Case II: When x=12,x = -\frac{1}{2},

    cos132+cos112=πcos132+πcos112\cos^{-1}-\frac{\sqrt{3}}{2} + \cos^{-1}-\frac{1}{2} = \pi - \cos^{-1}\frac{\sqrt{3}}{2} + \pi - \cos^{-1}\frac{1}{2}

    =3π2π2= \frac{3\pi}{2}\neq \frac{\pi}{2}

    Thus, x=12x = \frac{1}{2} is the only solution.

  56. Given equation is sin1x+sin12x=π3\sin^{-1}x + \sin^{-1}2x = \frac{\pi}{3}

    sin1x+sin12x=sin132\Rightarrow \sin^{-1}x + \sin^{-1}2x = \sin^{-1}\frac{\sqrt{3}}{2}

    sin1xsin132=sin12x\Rightarrow \sin{-1}x - \sin^{-1}\frac{\sqrt{3}}{2} = -\sin^{-1}2x

    sin1[x2321x2]=sin12x\Rightarrow \sin^{-1}\left[\frac{x}{2} - \frac{\sqrt{3}}{2}\sqrt{1 - x^2}\right] = -\sin^{-1}2x

    x3(1x2)=4x25x2=3(1x2)x=±327\Rightarrow x - \sqrt{3(1 - x^2)} = -4x \Rightarrow 25x^2 = 3(1 - x^2) \Rightarrow x = \pm\frac{\sqrt{3}}{2\sqrt{7}}

    Clearly, x=327x = -\frac{\sqrt{3}}{2\sqrt{7}} as angles will become negative and won’t satisfy the equality.

  57. Given, tan1x+tan1y+tan1z=π2,\tan^{-1}x + \tan^{-1}y + \tan^{-1}z= \frac{\pi}{2}, we have to prove that xy+yz+zx=1xy + yz + zx = 1

    tan1x+tan1y+tan1z=π2\tan^{-1}x + \tan^{-1}y + \tan^{-1}z= \frac{\pi}{2}

    tan1x+y+zxyz1xyyzzx=π2\Rightarrow \tan^{-1}\frac{x + y + z - xyz}{1 - xy - yz - zx} = \frac{\pi}{2}

    x+y+zxyz1xyyzzx=\Rightarrow \frac{x + y + z - xyz}{1 - xy - yz - zx} = \infty

    1xyyzzx=0\Rightarrow 1 - xy - yz - zx = 0

    xy+yz+zx=1\Rightarrow x y + yz + zx = 1

  58. Given tan1x+tan1y+tan1z=π,\tan^{-1}x + \tan^{-1}y + \tan^{-1}z= \pi, we have to prove that x+y+z=xyzx + y + z = xyz

    tan1x+tan1y+tan1z=π\tan^{-1}x + \tan^{-1}y + \tan^{-1}z= \pi

    tan1x+y+zxyz1xyyzzx=π\Rightarrow \tan^{-1}\frac{x + y + z - xyz}{1 - xy - yz - zx} = \pi

    x+y+zxyz1xyyzzx=tanπ=0\Rightarrow \frac{x + y + z - xyz}{1 - xy - yz - zx} = \tan \pi = 0

    x+y+z=xyz\Rightarrow x + y + z = xyz

  59. Given sin1x+sin1y=π2,\sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}, we have to prove that x1y2+y1x2=1x\sqrt{1 - y^2} + y\sqrt{1 - x^2} = 1

    sin1(x1y2+y1x2)=π2\Rightarrow \sin^{-1}(x\sqrt{1 - y^2} + y\sqrt{1 - x^2}) = \frac{\pi}{2}

    x1y2+y1x2=1\Rightarrow x\sqrt{1 - y^2} + y\sqrt{1 - x^2} = 1

  60. Give sin1x+sin1y+sin1z=π,\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi, we have to prove that x1x2+y1y2+z1z2=2xyzx\sqrt{1 - x^2} + y\sqrt{1 - y^2} + z\sqrt{1 - z^2} = 2xyz

    Let sin1x=A,sin1y=B\sin^{-1}x = A, \sin^{-1}y = B and sin1z=C\sin^{-1}z = C

    Then, A+B+C=πA+B=πCA + B + C = \pi \Rightarrow A + B = \pi - C

    We have to prove that sinA1sin2A+B1sin2B+z1sin2C=2sinAsinBsinC\sin A\sqrt{1 - \sin^2A} + B\sqrt{1 - \sin^2B} + z\sqrt{1 - \sin^2C} = 2\sin A\sin B\sin C

    L.H.S. =sinAcosA+sinBcosB+sinCcosC= \sin A\cos A + \sin B\cos B + \sin C\cos C

    =12(sin2A+sin2B+sin2C)=sin(A+B)cos(AB)+sinCcos[π(A+B)]= \frac{1}{2}(\sin 2A + \sin 2B + \sin 2C) = \sin(A + B)\cos(A - B) + \sin C\cos[\pi - (A + B)]

    =sinC[cos(AB)cos(A+B)][sin(A+B)=sin(πC)=sinC]= \sin C[\cos(A - B) - \cos(A + B)][\because \sin(A + B) = \sin(\pi - C) = \sin C]

    =2sinAsinBsinC== 2\sin A\sin B \sin C = R.H.S.

  61. Form given conditions 2tan1y=tanx+tan1z2\tan^{-1}y = \tan^{x} + \tan^{-1}z and 2y=x+z2y = x + z

    2y1y2=x+z1zx\Rightarrow \frac{2y}{1 - y^2} = \frac{x + z}{1 - zx}

    1y2=1zxy2=zx\Rightarrow 1 - y^2 = 1 - zx \Rightarrow y^2 = zx

    i.e. A.M. = G.M which is true only if x=y=zx = y = z

  62. Given cot1x+sin115=π4\cot^{-1}x + \sin^{-1}\frac{1}{\sqrt{5}} = \frac{\pi}{4}

    cot1x+cot1(5)21=π4\Rightarrow \cot^{-1}x + \cot^{-1}\sqrt{(\sqrt{5})^2 - 1} = \frac{\pi}{4}

    cot1x+cot12=π4\Rightarrow \cot^{-1}x + \cot^{-1}2 = \frac{\pi}{4}

    2x1x+2=cotπ4=1x=3\Rightarrow \frac{2x - 1}{x + 2} = \cot\frac{\pi}{4} = 1 \Rightarrow x = 3

  63. We have to solve tan12x+tan13x=π4\tan^{-1}2x + \tan^{-1}3x = \frac{\pi}{4}

    tan12x+3x12x.3x=π4\Rightarrow \tan^{-1}\frac{2x + 3x}{1 - 2x.3x} = \frac{\pi}{4}

    5x16x2=tanπ4=1\Rightarrow \frac{5x}{1 - 6x^2} = \tan\frac{\pi}{4} =1

    6x2+5x1=0(6x1)(x+1)==0\Rightarrow 6x^2 + 5x - 1 = 0 \Rightarrow (6x - 1)(x + 1) = = 0

    x=1,16\Rightarrow x = -1, \frac{1}{6}

    Clearly, x=1x = -1 does not satisfy the equation x=16\therefore x = \frac{1}{6}

  64. We have to solve tan1x+tan12x1x2=π3\tan^{-1} x + \tan^{-1}\frac{2x}{1 - x^2} = \frac{\pi}{3}

    tan1x+2tan1x=π3\Rightarrow \tan^{-1}x + 2\tan^{-1}x = \frac{\pi}{3}

    3tan1x=π3\Rightarrow 3\tan^{-1}x = \frac{\pi}{3}

    x=tanπ9\Rightarrow x = \tan\frac{\pi}{9}

  65. We have to solve Solve tan112=cot1x+tan117\tan^{-1}\frac{1}{2} = \cot^{-1}x + \tan^{-1}\frac{1}{7}

    tan112tan117=tan11x\Rightarrow \tan^{-1}\frac{1}{2} - \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{1}{x}

    tan11217112.17=tan11x\Rightarrow \tan^{-1}\frac{\frac{1}{2} - \frac{1}{7}}{1 - \frac{1}{2}.\frac{1}{7}} = \tan^{-1}\frac{1}{x}

    tan1513=tan11x\Rightarrow \tan^{-1}\frac{5}{13} = \tan^{-1}\frac{1}{x}

    x=135\Rightarrow x = \frac{13}{5}

  66. We have to solve tan1(x1)+tan1x+tan1(x+1)=tan13x\tan^{-1}(x - 1) + \tan^{-1}x + \tan^{-1}(x + 1) = \tan^{-1}3x

    tan1(x1)+tan1(x+1)=tan13xtan1x\Rightarrow \tan^{-1}(x - 1) + \tan^{-1}(x + 1) = \tan^{-1}3x - \tan^{-1}x

    2x2x2=2x1+3x2\Rightarrow \frac{2x}{2 - x^2} = \frac{2x}{1 + 3x^2}

    2x(4x21)=0\Rightarrow 2x(4x^2 - 1) = 0

    x=0,±12x = 0, \pm\frac{1}{2}

  67. We have to solve tan1x+1x1+tan1x1x=π+tan1(7)\tan^{-1}\frac{x + 1}{x - 1} + \tan^{-1}\frac{x - 1}{x} = \pi + \tan^{-1}(-7)

    tan1x2+x+x22x+1xx1=π+tan1(7)\Rightarrow \tan^{-1}\frac{x^2 + x + x^2 -2x + 1}{x - x - 1} = \pi + \tan^{-1}(-7)

    2x2x+1=7x72x28x+8=0\Rightarrow 2x^2 - x + 1 = 7x - 7 \Rightarrow 2x^2 - 8x + 8 = 0

    x24x+4=0x=2\Rightarrow x^2 - 4x + 4 = 0 \Rightarrow x = 2

  68. We have to solve cot1(a1)=cot1x+cot1(a2x+1)\cot^{-1}(a - 1) = \cot^{-1}x + \cot^{-1}(a^2 - x + 1)

    cota1cot1a2xx2+x1a2+1\cot^{a - 1} \cot^{-1}\frac{a^2x - x^2 + x - 1}{a^2 + 1}

    a3a2+a1=a2xx2+x1\Rightarrow a^3 - a^2 + a - 1 = a^2x - x^2 + x - 1

    x2(1+a2)x+(a3a2+a)=0\Rightarrow x^2 - (1 + a^2)x + (a^3 - a^2 + a) = 0

    (xa)[x(a2a+1)]=0\Rightarrow (x - a)[x - (a^2 - a + 1)] = 0

    x=a,a2a+1\Rightarrow x = a, a^2 - a + 1

  69. We have to solve sin12α1+α2+sin12β1+β2=2tan1x\sin^{-1}\frac{2\alpha}{1 + \alpha^2} + \sin^{-1}\frac{2\beta}{1 + \beta^2} = 2\tan^{-1}x

    We know that 2tan1x=sin12x1+x22\tan^{-1}x = \sin^{-1}\frac{2x}{1 + x^2}

    Thus, given equation becomes 2(tan1α+tan1β)=2tan1x2(\tan^{-1}\alpha + \tan^{-1}\beta) = 2\tan^{-1}x

    x=α+β1αβ\Rightarrow x = \frac{\alpha + \beta}{1 - \alpha\beta}

  70. We have to solve cos1x21x2+1+tan12xx21=2π3\cos^{-1}\frac{x^2 - 1}{x^2 + 1} + \tan^{-1}\frac{2x}{x^2 - 1} = \frac{2\pi}{3}

    Case I: π2tan1x2tan1x=2π3\Rightarrow \pi - 2\tan^{-1}x - 2\tan^{-1}x = \frac{2\pi}{3}

    tan1x=π12\Rightarrow \tan^{-1}x = \frac{\pi}{12}

    x=23x = 2 - \sqrt{3}

    Case II: π2tan1x+π2tan1x=2π3\Rightarrow \pi - 2\tan^{-1}x + \pi - 2\tan^{-1}x = \frac{2\pi}{3}

    tan1x=π3x=3\tan^{-1}x = \frac{\pi}{3} \Rightarrow x = \sqrt{3}

  71. We have to solve sin12a1+a2+cos11b21+b2=2tan1x\sin^{-1}\frac{2a}{1 + a^2} + \cos^{-1}\frac{1 - b^2}{1 + b^2} = 2\tan^{-1}x

    2tan1x+2tan1b=2tan1x\Rightarrow 2\tan^{-1}x + 2\tan^{-1}b = 2\tan^{-1}x

    x=a+b1abx = \frac{a + b}{1 - ab}

  72. We have to solve sin1x+sin1(1x)=cos1x\sin^{-1}x + \sin^{-1}(1 - x) = \cos^{-1}x

    sin1(x2xx2+(1x)1x2)=sin11x2\Rightarrow \sin^{-1}\left(x\sqrt{2x - x^2} + (1 - x)\sqrt{1 - x^2}\right) = \sin^{-1}\sqrt{1 - x^2}

    x2xx2+(1x)1x2=1x2\Rightarrow x\sqrt{2x - x^2} + (1 - x)\sqrt{1 - x^2} = \sqrt{1 - x^2}

    x2xx2=x1x2\Rightarrow x\sqrt{2x - x^2} = x\sqrt{1 - x^2}

    Squaring, we get

    x2(2xx21+x2)=0\Rightarrow x^2\left(2x - x^2 -1 + x^2\right) = 0

    x=0,12x = 0, \frac{1}{2}

  73. We have to solve tan1ax+12sec1bx=π4\tan^{-1}ax + \frac{1}{2}\sec^{-1}bx = \frac{\pi}{4}

    2tan1ax+sec1bx=π2\Rightarrow 2\tan^{-1}ax + sec^{-1}bx = \frac{\pi}{2}

    tan12ax1a2x2+tan11b2x2=π2\Rightarrow \tan^{-1}\frac{2ax}{1 - a^2x^2} + \tan^{-1}\sqrt{1 - b^2x^2} = \frac{\pi}{2}

    tan12ax1a2x2+1b2x212ax1a2x21b2x2=π2\Rightarrow \tan^{-1}\frac{\frac{2ax}{1 - a^2x^2} + \sqrt{1 - b^2x^2}}{1 - \frac{2ax}{1 - a^2x^2}\sqrt{1 - b^2x^2}} = \frac{\pi}{2}

    12ax1a2x21b2x2=0\Rightarrow 1 - \frac{2ax}{1 - a^2x^2}\sqrt{1 - b^2x^2} = 0

    1a2x22ax1b2x2=0\Rightarrow 1 - a^2x^2 - 2ax\sqrt{1 - b^2x^2} = 0

    12a2x2+a4x4=4a2x2(1b2x2)\Rightarrow 1 - 2a^2x^2 + a^4x^4 = 4a^2x^2(1 - b^2x^2)

    x=±12aba2\Rightarrow x = \pm \frac{1}{\sqrt{2ab - a^2}}

  74. We have to solve tan(cos1x)=sin(tan12)\tan(\cos^{-1}x) = \sin(\tan^{-1}2)

    tantan11x2x=sinsin124+1\Rightarrow \tan\tan^{-1}\frac{\sqrt{1 - x^2}}{x} = \sin\sin^{-1}\frac{2}{\sqrt{4 + 1}}

    1x2x=25\Rightarrow \frac{\sqrt{1 - x^2}}{x} = \frac{2}{\sqrt{5}}

    5(1x2)=4x2x=±53\Rightarrow 5(1 - x^2) = 4x^2 \Rightarrow x = \pm\frac{\sqrt{5}}{3}

  75. We have to solve tan(sec11x)=sincos115\tan\left(\sec^{-1}\frac{1}{x}\right) = \sin\cos^{-1}\frac{1}{\sqrt{5}}

    tantan11x2x=sinsin125\Rightarrow \tan\tan^{-1}\frac{\sqrt{1 - x^2}}{x} = \sin\sin^{-1}\frac{2}{\sqrt{5}}

    1x2x2=45\Rightarrow \frac{1 - x^2}{x^2} = \frac{4}{5}

    x=±53\Rightarrow x = \pm\frac{\sqrt{5}}{3}

  76. We have to solve sin1x+sin1y=2π3\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3} and cos1xcos1y=π3\cos^{-1}x - \cos^{-1}y = \frac{\pi}{3}

    sin1x+sin1y=2π3\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}

    π2cos1x+π2cos1y=2π3\frac{\pi}{2} - \cos^{-1}x + \frac{\pi}{2} - \cos^{-1} y = \frac{2\pi}{3}

    cos1x+cos1y=π3\Rightarrow \cos^{-1}x + \cos^{-1}y = \frac{\pi}{3}

    Thus, 2cos1x=2π3x=cosπ3=122\cos^{-1}x = 2\frac{\pi}{3} \Rightarrow x = \cos\frac{\pi}{3} = \frac{1}{2}

    and 2cos1y=0y=12\cos^{-1}y = 0 \Rightarrow y = 1

  77. Let sin1(sin10)=θsinθ=sin10=sin35π11\sin^{-1}(\sin10) = \theta \Rightarrow \sin\theta = \sin10 = \sin\frac{35\pi}{11}

    sinθ=sin(3π+2π11)=sin2π11\sin\theta = \sin\left(3\pi + \frac{2\pi}{11}\right) = -\sin\frac{2\pi}{11}

    =sin(2π11)= \sin\left(-\frac{2\pi}{11}\right)

    θ=2π11\theta = -\frac{2\pi}{11}

  78. 3tan1(12)=tan1[3.12(12)313(12)2][tan3θ=3tanθtan3θ13tan2θ]3\tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left[\frac{3.\frac{1}{2} - \left(\frac{1}{2}\right)^3}{1 - 3\left(\frac{1}{2}\right)^2}\right]\left[\because \tan3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}\right]

    =tan1[11814]=tan1112= \tan^{-1}\left[\frac{\frac{11}{8}}{\frac{1}{4}}\right] = \tan^{-1}\frac{11}{2}

    2tan115=tan1[2.151125]=tan15122\tan^{-1}\frac{1}{5} = \tan^{-1}\left[\frac{2.\frac{1}{5}}{1 - \frac{1}{25}}\right] = \tan^{-1}\frac{5}{12}

    Now 3tan112+2tan115=tan1112+tan15123\tan^{-1}\frac{1}{2} + 2\tan^{-1}\frac{1}{5} = \tan^{-1}\frac{11}{2} + \tan^{-1}\frac{5}{12}

    =π+tan1[112+5121112.512]=πtan114231= \pi + \tan^{-1}\left[\frac{\frac{11}{2} + \frac{5}{12}}{1- \frac{11}{2}.\frac{5}{12}}\right] = \pi - \tan^{-1}\frac{142}{31}

    Also, let sin1142655=θ\sin^{-1}\frac{142}{65\sqrt{5}} = \theta

    sinθ=142655tanθ=14231\sin\theta = \frac{142}{65\sqrt{5}} \Rightarrow \tan\theta = \frac{142}{31}

    Thus, 3tan112+2tan115+sin1142655=πtan114231+tan1142313\tan^{-1}\frac{1}{2} + 2\tan^{-1}\frac{1}{5} + \sin^{-1}\frac{142}{65\sqrt{5}} = \pi - \tan^{-1}\frac{142}{31} + \tan^{-1}\frac{142}{31}

    =π= \pi

  79. The given intervals indicate principal values of cos1x\cos^{-1}x and sin1x\sin^{-1}x.

    cos[2cos1x+sin1x]=cos(cos1x+cos1x+sin1x)\cos[2\cos^{-1}x + \sin^{-1}x] = \cos(\cos^{-1}x + \cos^{-1}x + \sin^{-1}x)

    =cos[π2+cos1x]=sincos1x=sinsin11x2= \cos\left[\frac{\pi}{2} + \cos^{-1}x\right] = -\sin\cos^{-1}x = -\sin\sin^{-1}\sqrt{1 - x^2}

    =1x2=1125=265= -\sqrt{1 - x^2} = -\sqrt{1 - \frac{1}{25}} = -\frac{2\sqrt{6}}{5}.

  80. We have to prove that 12cos135=tan112=π412cos145\frac{1}{2}\cos^{-1}\frac{3}{5} = \tan^{-1}\frac{1}{2} = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{4}{5}

    Let cos135=α,2tan112=β\cos^{-1}\frac{3}{5} = \alpha, 2\tan^{-1}\frac{1}{2} = \beta and π2cos145=γ\frac{\pi}{2} - \cos^{-1}\frac{4}{5} = \gamma

    cosα=coscos135=35\cos\alpha = \cos\cos^{-1}\frac{3}{5} = \frac{3}{5}

    cosβ=cos[cos11141+14]=coscos135=35\cos\beta = \cos\left[\cos^{-1}\frac{1 - \frac{1}{4}}{1 + \frac{1}{4}}\right] = \cos\cos^{-1}\frac{3}{5} = \frac{3}{5}

    cosγ=cos[π2cos145]=sincos145=35\cos\gamma = \cos\left[\frac{\pi}{2} - \cos^{-1}\frac{4}{5}\right] = \sin\cos^{-1}\frac{4}{5} = \frac{3}{5}

    Thus, α=β=γ\alpha = \beta = \gamma

  81. Let A=2tan1(221)=2tan1(2×1.4141)=2tan1(1.828)A = 2\tan^{-1}(2\sqrt{2} - 1) = 2\tan^{-1}(2\times 1.414 - 1) = 2\tan^{-1}(1.828)

    =2×(>60)[tan60=3=1.732]= 2\times (> 60^\circ)[\because \tan60^\circ = \sqrt{3} = 1.732]

    Let B=3sin113+sin135B = 3\sin^{-1}\frac{1}{3} + \sin^{-1}\frac{3}{5}

    =sin1[3×134(13)3]+sin135= \sin^{-1}\left[3\times\frac{1}{3} - 4\left(\frac{1}{3}\right)^3\right] + \sin^{-1}\frac{3}{5}

    =sin12327+sin135=sin10.862+sin10.6= \sin^{-1}\frac{23}{27} + \sin^{-1}\frac{3}{5} = \sin^{-1}0.862 + \sin^{-1}0.6

    =<60+<45<105= <60^\circ + <45^\circ < 105^\circ

    Thus, AA is the greater angle.

  82. Whenever you have to sum trigonometric series of inverse terms check if it is possible to write them as difference of two terms and add the terms where terms cancel each other. If we look at the terms given in this series then that is possible.

    tan1(a1xyx+a1y)=tan1(a1yx1+a1yx)=tan1a1tan1yx\tan^{-1}\left(\frac{a_1x - y}{x + a_1y}\right) = \tan^{-1}\left(\frac{a_1 - \frac{y}{x}}{1 + a_1\frac{y}{x}}\right) = \tan^{-1}a_1 - \tan^{-1}\frac{y}{x}

    tan1(a1a11+a1a2)=tan1a2tan1a1\tan^{-1}\left(\frac{a_1 - a_1}{1 + a_1a_2}\right) = \tan^{-1}a_2 - \tan^{-1}a_1

    \ldots

    tan1(anan11+anan1)=tan1antan1an1\tan^{-1}\left(\frac{a_n - a_{n - 1}}{1 + a_na_{n - 1}}\right) = \tan^{-1}a_n - \tan^{-1}a_{n - 1}

    tan11an=cot1an\tan^{-1}\frac{1}{a_n} = \cot^{-1}a_n

    Adding these, we get L.H.S.=tan1an+cot1antan1yxL.H.S. = \tan^{-1}a_n + \cot^{-1}a_n - \tan^{-1}\frac{y}{x}

    =π2tan1yx[tan1x+cot1x=π2]= \frac{\pi}{2} - \tan^{-1}\frac{y}{x}\left[\because\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}\right]

    =cot1yx=tan1xy=R.H.S.= \cot^{-1}\frac{y}{x} = \tan^{-1}\frac{x}{y} = R.H.S.

  83. Let tnt_n denote the nn-th term of the series, then tn=cot12n2=cot1(2n1)cot1(2n+1)t_n = \cot^{-1}2n^2 = \cot^{-1}(2n - 1) - \cot^{-1}(2n + 1)

    Putting n=1,2,3,..,n = 1,2,3, .., we get

    t1=cot11cot13t_1 = \cot^{-1}1 - \cot^{-1}3

    t2=cot13cot15t_2 = \cot^{-1}3 - \cot^{-1}5

    t3=cot15cot17t_3 = \cot^{-1}5 - \cot^{-1}7

    \ldots

    tn=cot1(2n1)cot1(2n+1)t_n = \cot^{-1}(2n - 1) - \cot^{-1}(2n + 1)

    Adding Sn=cot11cot1(2n+1)S_n = \cot^{-1}1 - \cot^{-1}(2n + 1)

    As n,cot1(2n+1)0n\rightarrow \infty, \cot^{-1}(2n + 1)\rightarrow 0

    Hence, S=cot11=π4S_\infty = \cot^{-1}1 = \frac{\pi}{4}

  84. Case I. When x=1x = 1

    y=2tan1x+sin12x1+x2=2.tan11+sin121+1=2.π4+π2=πy = 2\tan^{-1}x + \sin^{-1}\frac{2x}{1 + x^2} = 2.\tan^{-1}1 + \sin^{-1}\frac{2}{1 + 1} = 2.\frac{\pi}{4} + \frac{\pi}{2} = \pi

    Case II. When x>1x > 1

    2tan1x=πsin12x1+x2y=π2\tan^{-1}x = \pi - \sin^{-1}\frac{2x}{1 + x^2} \Rightarrow y = \pi

  85. Let cos1x0=θcosθ=x0\cos^{-1}x_0 = \theta \Rightarrow \cos\theta = x_0

    We are also given that xr+1=1+xr2x_{r + 1} = \sqrt{\frac{1 + x_r}{2}}

    Putting r=0,r = 0, we get x1=1+x02=1+cosθ2x_1 = \sqrt{\frac{1 + x_0}{2}} = \sqrt{\frac{1 + \cos\theta}{2}}

    =cos2θ2=cosθ2=cosθ2[0cos1x0π]= \sqrt{\cos^2\frac{\theta}{2}} = \left|\cos\frac{\theta}{2}\right| = \cos\frac{\theta}{2}[\because 0\leq\cos^{-1}x_0\leq \pi]

    Similarly, x2=1+cosθ22=cosθ22x_2 = \sqrt{\frac{1 + \cos\frac{\theta}{2}}{2}} = \cos\frac{\theta}{2^2}

    thus, xn=cosθ2nx_n = \cos\frac{\theta}{2^n}

    Let y=x1x2x3xny = x_1x_2x_3\ldots x_n then y=cosθ2cosθ22cosθ2ny = \cos\frac{\theta}{2}\cos\frac{\theta}{2^2}\ldots\cos\frac{\theta}{2^n}

    2ysinθ2n=2sinθ2ncosθ2ncosθ2n1cosθ22y\sin\frac{\theta}{2^n} = 2\sin\frac{\theta}{2^n}\cos\frac{\theta}{2^n}\cos\frac{\theta}{2^{n - 1}}\ldots\cos\frac{\theta}{2}

    22yθ2n=2sinθ2n1cosθ2n1cosθ2n1cosθ22^2y\frac{\theta}{2^n} = 2\sin\frac{\theta}{2^{n - 1}}\cos\frac{\theta}{2^{n - 1}}\cos\frac{\theta}{2^{n - 1}}\ldots\cos\frac{\theta}{2}

    Proceeding like above, we finally arrive at following

    2n1ysinθ2n=sinθ2cosθ22^{n - 1}y\sin\frac{\theta}{2^n} = \sin\frac{\theta}{2}\cos\frac{\theta}{2}

    2nysinθ2n=2sinθ2cosθ2=sinθ2^ny\sin\frac{\theta}{2^n} = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} = \sin\theta

    y=12n.sinθsinθ2ny = \frac{1}{2^n}.\frac{\sin\theta}{\sin\frac{\theta}{2^n}}

    x1x2x_1x_2\ldots to =limn12nsinθsinθ2n\infty = \lim_{n\to \infty} \frac{1}{2^n}\frac{\sin\theta}{\sin\frac{\theta}{2^n}}

    =limn12nsinθsinθ2nθ2n.θ2n= \lim_{n\to\infty}\frac{1}{2^n}\frac{\sin\theta}{\frac{\sin\frac{\theta}{2^n}}{\frac{\theta}{2^n}}.\frac{\theta}{2^n}}

    =sinθθ= \frac{\sin\theta}{\theta}

    R.H.S. =1cos2θsinθθ=θ=cos1x0== \frac{\sqrt{1 - \cos^2\theta}}{\frac{\sin\theta}{\theta}} = \theta = \cos^{-1}x_0 = L.H.S.

  86. Let cos1ab=θcosθ=ana=bcosθ\cos^{-1}\frac{a}{b} = \theta \Rightarrow \cos\theta = \frac{a}{n}\Rightarrow a = b\cos\theta

    Now, a1=a+b2=bcosθ+b2=bcos2θ2a_1 = \frac{a + b}{2} = \frac{b\cos\theta + b}{2} = b\cos^2\frac{\theta}{2}

    b1=a1b=bcos2θ2.b=bcosθ2b_1 = \sqrt{a_1b} = \sqrt{b\cos^2\frac{\theta}{2}.b} = b\cos\frac{\theta}{2}

    a2=a1+b12=bcos2θ2+bcosθ22=bcosθ2cos2θ22a_2 = \frac{a_1 + b_1}{2} = \frac{b\cos^2\frac{\theta}{2} + b\cos\frac{\theta}{2}}{2} = b\cos\frac{\theta}{2}\cos^2\frac{\theta}{2^2}

    b2=a2b1=bcosθ2.cos2θ22bcosθ2=bcosθ2cosθ22b_2 = \sqrt{a_2b_1} = \sqrt{b\cos\frac{\theta}{2}.\cos^2\frac{\theta}{2^2}b\cos\frac{\theta}{2}} = b\cos\frac{\theta}{2}\cos\frac{\theta}{2^2}

    Proceeding as above, we get an=bcosθ2cosθ22cosθ2n=b.12n.sinθsinθ2na_n = b\cos\frac{\theta}{2}\cos\frac{\theta}{2^2}\ldots\cos\frac{\theta}{2^n} = b.\frac{1}{2^n}.\frac{\sin\theta}{\sin\frac{\theta}{2^n}}

    and bn=bcosθ2cosθ22θ2nb_n = b\cos\frac{\theta}{2}\cos\frac{\theta}{2^2}\ldots\frac{\theta}{2^n}

    Now, limnan=b.sinθθ\lim_{n\to\infty}a_n = \frac{b.\sin\theta}{\theta} [like in previous problem]

    =b1sin2θcos1ab=b1a2b2cos1ab=b2a2cos1ab= \frac{b\sqrt{1 - \sin^2\theta}}{\cos^{-1}\frac{a}{b}} = \frac{b\sqrt{1 - \frac{a^2}{b^2}}}{\cos^{-1}\frac{a}{b}} = \frac{\sqrt{b^2 - a^2}}{\cos^{-1}\frac{a}{b}}

    and limnbn=limnbcosθ2cosθ22cosθ2n=b2a2cos1ab\lim_{n\to\infty}b_n = \lim_{n\to\infty}b\cos\frac{\theta}{2}\cos\frac{\theta}{2^2}\ldots\cos\frac{\theta}{2^n} = \frac{\sqrt{b^2 - a^2}}{\cos^{-1}\frac{a}{b}}

  87. We have to prove that tan113+tan117++tan11n2+n+1=tan1nn+2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} + \ldots + \tan^{-1}\frac{1}{n^2 + n + 1} = \tan^{-1}\frac{n}{n + 2}

    When n=1n = 1, L.H.S. =tan113=\tan^{-1}\frac{1}{3} and R.H.S. =tan111+2=tan113= \tan^{-1}\frac{1}{1 + 2} = \tan^{-1}\frac{1}{3}

    We see that it is true for n=1n = 1. Let it is true for n=1n = 1

    tan113+tan117++tan11m2+m+1=tan1mm+2\Rightarrow \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} + \ldots + \tan^{-1}\frac{1}{m^2 + m + 1} = \tan^{-1}\frac{m}{m + 2}

    Adding tan11(m+1)2+(m+1)+1\tan^{-1}\frac{1}{(m + 1)^2 + (m + 1) + 1} to both sides, we get

    R.H.S. =tan1mm+2+tan11(m+1)2+(m+1)+1= \tan^{-1}\frac{m}{m + 2} + \tan^{-1}\frac{1}{(m + 1)^2 + (m + 1) + 1}

    =tan1mm+1+tan1m+1m+3tan1mm+2= \tan^{-1}\frac{m}{m + 1} + \tan^{-1}\frac{m + 1}{m + 3} - \tan^{-1}\frac{m}{m + 2}

    =tan1(m+1)+1(m+1)+2= \tan^{-1}\frac{(m + 1) + 1}{(m + 1) + 2}

    Thus, it is true for n=m+1n = m + 1 if it is true for n=mn = m. Hence, we have proven the result by using mathematical induction.

  88. Since x1,x2,x3,x4x_1, x_2, x_3, x_4 are the roots of the equation x4x3sin2β+x2cos2βxcosβsinβ=0x^4 - x^3\sin2\beta + x^2\cos2\beta - x\cos\beta - \sin\beta = 0

    x1=x1+x2+x3+x4=sin2β1=sin2β\therefore \sum x_1 = x_1 + x_2 + x_3 + x_4 = -\frac{-\sin2\beta}{1} = \sin2\beta

    x1x2=cos2β\sum x_1x_2 = \cos2\beta

    x1x2x3=cosβ\sum x_1x_2x_3 = \cos\beta

    and x1x2x3x4=sinβ\sum x_1x_2x_3x_4 = -\sin\beta

    Now tan[tan1x1+tan1x2+tan1x3+tan1x4]=x1x1x2x31x1x2+x1x2x3x4\tan[\tan^{-1}x_1 + \tan^{-1}x_2 + \tan^{-1}x_3 + \tan^{-1}x_4] = \frac{\sum x_1 - \sum x_1x_2x_3}{1 - \sum x_1x_2 + x_1x_2x_3x_4}

    =sin2βcosβ1cos2βsinβ=2sinβcosβcosβ2sin2βsinβ= \frac{\sin2\beta - \cos\beta}{1 - \cos2\beta - \sin\beta} = \frac{2\sin\beta\cos\beta - \cos\beta}{2\sin^2\beta - \sin\beta}

    =cotβ= \cot\beta

    tan[tan1x1+tan1x2+tan1x3+tan1x4]=tan(π2β)\Rightarrow \tan[\tan^{-1}x_1 + \tan^{-1}x_2 + \tan^{-1}x_3 + \tan^{-1}x_4] = \tan\left(\frac{\pi}{2} - \beta\right)

    tan1x1+tan1x2+tan1x3+tan1x4=nπ+π2β\Rightarrow \tan^{-1}x_1 + \tan^{-1}x_2 + \tan^{-1}x_3 + \tan^{-1}x_4 = n\pi + \frac{\pi}{2} - \beta

  89. Let cot1(cot5π4)=θcotθ=cot(π+π4)\cot^{-1}\left(\cot\frac{5\pi}{4}\right) = \theta \Rightarrow \cot\theta = \cot\left(\pi + \frac{\pi}{4}\right)

    =cotπ4θ=π4= \cot\frac{\pi}{4}\Rightarrow \theta = \frac{\pi}{4}

  90. Let sin1(sin5)=θsinθ=sin5=sin35π22=sin(π+13π22)\sin^{-1}(\sin5) = \theta \Rightarrow \sin\theta = \sin5 = \sin\frac{35\pi}{22} = \sin\left(\pi + \frac{13\pi}{22}\right)

    =sin13π22sinθ=sin13π22=sin(π9π22)= -\sin\frac{13\pi}{22} \Rightarrow \sin\theta = -\sin\frac{13\pi}{22} = -\sin\left(\pi - \frac{9\pi}{22}\right)

    θ=9π22=52π\theta = -\frac{9\pi}{22} = 5 - 2\pi

  91. Let cos1(cos5π4)=θcosθ=cos(2π3π4)\cos^{-1}(\cos\frac{5\pi}{4}) = \theta \Rightarrow \cos\theta = \cos\left(2\pi - \frac{3\pi}{4}\right)

    cosθ=cos3π4θ=3π4\Rightarrow \cos\theta = \cos\frac{3\pi}{4} \Rightarrow \theta = \frac{3\pi}{4}

  92. Let cos1cos10=θcosθ=cos10=cos35π11=cos(3π+2π11)\cos^{-1}\cos10 = \theta \Rightarrow \cos\theta = \cos10 = \cos\frac{35\pi}{11} = \cos\left(3\pi + \frac{2\pi}{11}\right)

    cosθ=cos2π11=cos(π+9π11)=cos9π11\Rightarrow \cos\theta = -\cos\frac{2\pi}{11} = -\cos\left(\pi + \frac{-9\pi}{11}\right) = \cos\frac{-9\pi}{11}

    θ=9π11\Rightarrow \theta = \frac{-9\pi}{11}

  93. Given, sin(2tan113)+costan122\sin\left(2\tan^{-1}\frac{1}{3}\right) + \cos\tan^{-1}2\sqrt{2}

    =sintan12.13119+coscos113= \sin\tan^{-1}\frac{2.\frac{1}{3}}{1 - \frac{1}{9}} + \cos\cos^{-1}\frac{1}{3}

    =sintan134+13=sinsin135+13= \sin\tan^{-1}\frac{3}{4} + \frac{1}{3} = \sin\sin^{-1}\frac{3}{5} + \frac{1}{3}

    =35+13=1415= \frac{3}{5} + \frac{1}{3} = \frac{14}{15}

  94. Given, cot[cot17+cot18+cot118]\cot[\cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18]

    cot17+cot18+cot118=tan117+tan118+tan1118\cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18 = \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} + \tan^{-1}\frac{1}{18}

    =tan1(17+18117.18)+tan1118=tan11555+tan1118= \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7}.\frac{1}{8}}\right) + \tan^{-1}\frac{1}{18}= \tan^{-1}\frac{15}{55} + \tan^{-1}\frac{1}{18}

    =tan1311+tan1118=tan1311+1181311.118= \tan^{-1}\frac{3}{11} + \tan^{-1}\frac{1}{18} = \tan^{-1}\frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11}.\frac{1}{18}}

    =tan1.65198.198195=tan113=cot13= \tan^{-1}.\frac{65}{198}.\frac{198}{195} = \tan^{-1}\frac{1}{3} = \cot^{-1}3

    cot[cot17+cot18+cot118]=3\therefore \cot[\cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18] = 3

  95. We have to prove that that sin135+cos11213+cot15633=π2\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} + \cot^{-1}\frac{56}{33} = \frac{\pi}{2}

    sin135=tan134\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}

    cos11213=tan1512\cos^{-1}\frac{12}{13} = \tan^{-1}\frac{5}{12}

    cot15633=tan13356\cot^{-1}\frac{56}{33} = \tan^{-1}\frac{33}{56}

    sin135+cos11213+cot15633=tan134+tan1512+tan13356\therefore \sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} + \cot^{-1}\frac{56}{33} = \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{33}{56}

    =tan134+512134.512+tan13356= \tan^{-1}\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4}.\frac{5}{12}} + \tan^{-1}\frac{33}{56}

    =tan15648.4833+tan13356=tan15633+tan13356= \tan^{-1}\frac{56}{48}.\frac{48}{33} + \tan^{-1}\frac{33}{56} = \tan^{-1}\frac{56}{33} + \tan^{-1}\frac{33}{56}

    We know that tan1x+tan11x=π/2\tan^{-1}x + \tan^{-1}\frac{1}{x} = \pi/2 \because denominator will be zero.

    Hence, tan15633+tan13356=π/2\tan^{-1}\frac{56}{33} + \tan^{-1}\frac{33}{56} = \pi/2

  96. We have to prove that 2cot15+cot17+2cot18=π42\cot^{-1}5 + \cot^{-1}7 + 2\cot^{-1}8 = \frac{\pi}{4}

    2cot16=2tan115=tan12.151125=tan15122\cot^{-1}6 = 2\tan^{-1}\frac{1}{5} = \tan^{-1}\frac{2.\frac{1}{5}}{1 - \frac{1}{25}} = \tan^{-1}\frac{5}{12}

    2cot18=2tan118=tan12.181164=tan116632\cot^{-1}8 = 2\tan^{-1}\frac{1}{8} = \tan^{-1}\frac{2.\frac{1}{8}}{1 - \frac{1}{64}} = \tan^{-1}\frac{16}{63}

    L.H.S. =tan1512+tan117+tan11663= \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{16}{63}

    =tan1512+16631512.1663+tan117=tan134+tan117= \tan^{-1}\frac{\frac{5}{12} + \frac{16}{63}}{1 - \frac{5}{12}.\frac{16}{63}} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7}

    =tan134+17134.17=tan11=π4== \tan^{-1}\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4}.\frac{1}{7}} = \tan^{-1}1 = \frac{\pi}{4} = R.H.S.

  97. We have to prove that tan11+tan12+tan13=2(tan11+tan112+tan113).\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = 2\left(\tan^{-1}1 + \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}\right).

    L.H.S. =tan11+tan12+tan13=tan11+212+tan13= \tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \tan^{-1}\frac{1 + 2}{1 - 2} + \tan^{-1}3

    =tan1(3)+tan13=nπ= \tan^{-1}(-3) + \tan^{-1}3 = n\pi

    2tan11=tan11+111.1=tan12\tan^{-1}1 = \tan^{-1}\frac{1 + 1}{1 - 1.1} = \tan^{-1}\infty

    2tan112=tan12.12114=tan1432\tan^{-1}\frac{1}{2} = \tan^{-1}\frac{2.\frac{1}{2}}{1 - \frac{1}{4}} = \tan^{-1}\frac{4}{3}

    2tan113=tan12.13119=tan1342\tan^{-1}\frac{1}{3} = \tan^{-1}\frac{2.\frac{1}{3}}{1 - \frac{1}{9}} = \tan^{-1}\frac{3}{4}

    Now tan1x+tan11x=2nπ+π2\tan^{-1}x + \tan^{-1}\frac{1}{x} = 2n\pi + \frac{\pi}{2}

    \therefore R.H.S. =nπ= n\pi

  98. Given A=tan117A = \tan^{-1}\frac{1}{7} and B=tan113B = \tan^{-1}\frac{1}{3}, we have to prove that cos2A=sin4B\cos 2A = \sin 4B.

    cosA=costan117=coscos1750=750\cos A = \cos\tan^{-1}\frac{1}{7} = \cos\cos^{-1}\frac{7}{\sqrt{50}} = \frac{7}{\sqrt{50}}

    cos2A=2cos2A1=2.49501=4850=2425\cos2A = 2\cos^2A - 1 = 2.\frac{49}{50} - 1 = \frac{48}{50} = \frac{24}{25}

    cosB=costan113=coscos1310sinB=110\cos B = \cos\tan^{-1}\frac{1}{3} = \cos\cos^{-1}\frac{3}{\sqrt{10}} \Rightarrow \sin B = \frac{1}{\sqrt{10}}

    sin4B=4sinBcosB(2cos2B1)=4.110.310(2.9101)\sin4B = 4\sin B\cos B(2\cos^2B - 1) = 4.\frac{1}{\sqrt{10}}.\frac{3}{\sqrt{10}}\left(2.\frac{9}{10} - 1\right)

    =1210.810=2425= \frac{12}{10}.\frac{8}{10} = \frac{24}{25}

    Hence, cos2A=sin4B\cos2A = \sin4B.

  99. We have to find the sum tan1x1+1.2x2+tan1x1+2.3x2++tan111+n(n+1)x2,x>0.\tan^{-1}\frac{x}{1 + 1.2x^2} + \tan^{-1}\frac{x}{1 + 2.3x^2} + \ldots + \tan^{-1}\frac{1}{1 + n(n + 1)x^2}, x> 0.

    tan1x1+1.2x2=tan12xtan1x\tan^{-1}\frac{x}{1 + 1.2x^2} = \tan^{-1}2x - \tan^{-1}x

    tan1x1+2.3x2=tan13xtan12x\tan^{-1}\frac{x}{1 + 2.3x^2} = \tan^{-1}3x - \tan^{-1}2x

    \ldots

    tan111+n(n+1)x2=tan1(n+1)xtan1nx\tan^{-1}\frac{1}{1 + n(n + 1)x^2} = \tan^{-1}(n + 1)x - \tan^{-1}nx

    Adding, we get

    tan1x1+1.2x2+tan1x1+2.3x2++tan111+n(n+1)x2=tan1(n+1)xtan1x\tan^{-1}\frac{x}{1 + 1.2x^2} + \tan^{-1}\frac{x}{1 + 2.3x^2} + \ldots + \tan^{-1}\frac{1}{1 + n(n + 1)x^2} = \tan^{-1}(n + 1)x - \tan^{-1}x

    =tan1nx1+(n+1)x2= \tan^{-1}\frac{nx}{1 + (n + 1)x^2}

  100. We have to find the sum tan1d1+a1a2+tan1d1+a2a3++tan1d1+anan+1,\tan^{-1}\frac{d}{1 + a_1a_2} + \tan^{-1}\frac{d}{1 + a_2a_3} + \ldots + \tan^{-1}\frac{d}{1 + a_na_{n + 1}}, where a1,a2,,an,an+1a_1, a_2, \ldots, a_n, a_{n + 1} form an arithmetic progression with common difference d.d.

    tan1d1+a1a2=tan1a2a11+a1a2=tan1a2tan1a1\tan^{-1}\frac{d}{1 + a_1a_2} = \tan^{-1}\frac{a_2 - a_1}{1 + a_1a_2} = \tan^{-1}a_2 - \tan^{-1}a_1

    tan1d1+a2a3=tan1a3a11+a2a3=tan1a3tan1a2\tan^{-1}\frac{d}{1 + a_2a_3} = \tan^{-1}\frac{a_3 - a_1}{1 + a_2a_3} = \tan^{-1}a_3 - \tan^{-1}a_2

    \ldots

    tan1d1+anan+1=tan1an+1an1+anan+1=tan1an+1an\tan^{-1}\frac{d}{1 + a_na_{n + 1}} = \tan^{-1}\frac{a_{n + 1} - a_n}{1 + a_na_{n +1}} = \tan^{-1}a_{n + 1} - a_n

    Adding, we get

    tan1d1+a1a2+tan1d1+a2a3++tan1d1+anan+1=tan1an+1tan1a1=tan1nd1+a1an+1\tan^{-1}\frac{d}{1 + a_1a_2} + \tan^{-1}\frac{d}{1 + a_2a_3} + \ldots + \tan^{-1}\frac{d}{1 + a_na_{n + 1}} = \tan^{-1}a_{n + 1} - \tan^{-1}a_1 = \tan^{-1}\frac{nd}{1 + a_1a_{n + 1}}

  101. We have computed sin1sin5=52π\sin^{-1}\sin5 = 5-2\pi, so we can rewrite the inequality as 52π>x24x5 - 2\pi>x^2 - 4x or x24x+2π5<0x^2 - 4x + 2\pi - 5 < 0 which is a quadratic equation having positive coefficient for x2x^2. Thus it will be

    (xα)(xβ)<0(x - \alpha)(x - \beta) < 0 for the above to hold true.

    [x4164(2π5)2][x4+164(2π5)]<0\Rightarrow \left[x - \frac{4 - \sqrt{16 - 4(2\pi - 5)}}{2}\right]\left[x - \frac{4 + \sqrt{16 - 4(2\pi - 5)}}{}\right] < 0

    x(292π,2+92π)\Rightarrow x\in (2 - \sqrt{9 - 2\pi}, 2 + \sqrt{9 - 2\pi})

  102. Given, tan1y=5tan1x\tan^{-1}y = 5\tan^{-1}x, which we can rewrite as tan1y=2tan1x+3tan1x\tan^{-1}y = 2\tan^{-1}x + 3\tan^{-1}x

    R.H.S. =tan12x1x2+tan13xx313x2= \tan^{-1}\frac{2x}{1 - x^2} + \tan^{-1}\frac{3x - x^3}{1 - 3x^2}

    =tan12x(13x2)+(1x2)(3xx3)(1x2)(13x2)2x(3xx3)= \tan^{-1}\frac{2x(1 - 3x^2) + (1 - x^2)(3x - x^3)}{(1 - x^2)(1 - 3x^2) - 2x(3x - x^3)}

    =tan12x6x3+3xx33x3+x514x2+3x46x2+2x4=\tan^{-1}\frac{2x - 6x^3 + 3x - x^3 -3x^3 + x^5}{1 - 4x^2 + 3x^4 - 6x^2 + 2x^4}

    y=x510x3+2x5x410x2+1\Rightarrow y = \frac{x^5 - 10x^3 + 2x}{5x^4 - 10x^2 + 1}

    Let tan1x=18\tan^{-1}x = 18^\circ then tan1y=π25x410x2+1=0\tan^{-1}y = \frac{\pi}{2}\Rightarrow 5x^4 - 10x^2 + 1 = 0.

  103. Let cos1x=α,cos1y=β,cos1z=γ\cos^{-1}x = \alpha, \cos^{-1}y = \beta, \cos^{-1}z = \gamma

    cosα=x,cosβ=y,cosγ=z\Rightarrow \cos\alpha = x, \cos\beta = y, \cos\gamma = z

    Also, given α+β+γ=π\alpha + \beta + \gamma = \pi

    and x+y+z=32cosα+cosβ+cosγ=32x + y + z = \frac{3}{2} \Rightarrow \cos\alpha + \cos\beta + \cos\gamma = \frac{3}{2}

    Let z=cosα+cosβ+cosγz = \cos\alpha + \cos\beta + \cos\gamma and angle γ\gamma be fixed then

    z=2cosα+β2cosαβ2+cosγz = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} + \cos\gamma

    =2sinγ2cosαβ2+cosγ= 2\sin\frac{\gamma}{2}\cos\frac{\alpha - \beta}{2} + \cos\gamma

    Since γ\gamma is fixed, cosγ\cos\gamma and sinγ2\sin\frac{\gamma}{2} are fixed. Only changing term is cosαβ2\cos\frac{\alpha - \beta}{2}

    Clearly, zz will be maximum if cosαβ2=1\cos\frac{\alpha - \beta}{2} = 1 i.e. α=β\alpha = \beta

    Similarly, when angle β\beta is fixed, zz will be maximum if γ=α\gamma = \alpha

    and when angle α\alpha is fixed, zz will be maximum if β=γ\beta = \gamma

    z\Rightarrow z will be maximum if α+β+γ=60\alpha + \beta + \gamma = 60^\circ

    zmax=cos60+cos60+cos60=32\Rightarrow z_{max} = \cos60^\circ + \cos60^\circ + \cos60^\circ = \frac{3}{2}

    α=β=γ=60x=y=z\Rightarrow \alpha = \beta = \gamma = 60^\circ \Rightarrow x = y = z

  104. Let sin1x=α,sin1y=β,sin1z=γ\sin^{-1}x = \alpha, \sin^{-1}y = \beta, \sin^{-1}z = \gamma

    sinα=x,sinβ=y,sinγ=z\Rightarrow \sin\alpha = x, \sin\beta = y, \sin\gamma = z

    Also, α+β+γ=π\alpha + \beta + \gamma = \pi

    α+β=πγ\Rightarrow \alpha + \beta = \pi - \gamma

    cos(α+β)=cos(πγ)\Rightarrow \cos(\alpha + \beta) = \cos(\pi - \gamma)

    cosαcosβsinαsinβ=cosγ\Rightarrow \cos\alpha\cos\beta - \sin\alpha\sin\beta = -\cos\gamma

    1x21y2xy=1z2\Rightarrow \sqrt{1 - x^2}\sqrt{1 - y^2} - xy = -\sqrt{1 - z^2}

    (1x2)(1y2)=xy1z2\Rightarrow \sqrt{(1 - x^2)(1 - y^2)} = xy - \sqrt{1 - z^2}

    Squaring, we get

    (1x2)(1y2)=x2y2+1z22xy1z2(1 - x^2)(1 - y^2) = x^2y^2 + 1 - z^2 -2xy\sqrt{1 - z^2}

    x2+y2z2=2xy1z2\Rightarrow x^2 + y^2 - z^2 = 2xy\sqrt{1 - z^2}

    Squaring again, we get

    x4+y4+z4+4x2y2z2=2(x2y2+y2z2+z2x2)x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2)

  105. Let tan1αβ=θ,tan1βα=ϕ\tan^{-1}\frac{\alpha}{\beta} = \theta, \tan^{-1}\frac{\beta}{\alpha} = \phi

    tanθ=αβ,tanϕ=βα\therefore \tan\theta = \frac{\alpha}{\beta}, \tan\phi = \frac{\beta}{\alpha}

    L.H.S. =α32sin2θ2+β32cos2ϕ2= \frac{\alpha^3}{2\sin^2\frac{\theta}{2}} + \frac{\beta^3}{2\cos^2\frac{\phi}{2}}

    =α31cosθ+β31+cosϕ= \frac{\alpha^3}{1 - \cos\theta} + \frac{\beta^3}{1 + \cos\phi}

    =α31βα2+β2+β31+αα2+β2= \frac{\alpha^3}{1 - \frac{\beta}{\sqrt{\alpha^2 + \beta^2}}} + \frac{\beta^3}{1 + \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}}}

    =α2+β2[α3(α2+β2+β)(α2+β2)β2+β3(α2+β2)α(α2+β2)α2]= \sqrt{\alpha^2 + \beta^2}\left[\frac{\alpha^3(\sqrt{\alpha^2 + \beta^2}+ \beta)}{(\alpha^2 + \beta^2) - \beta^2} + \frac{\beta^3(\sqrt{\alpha^2 + \beta^2}) - \alpha}{(\alpha^2 + \beta^2) - \alpha^2}\right]

    =α2+β2[α(α2+β2+β)+β(α2+β2α)]= \sqrt{\alpha^2 + \beta^2}[\alpha(\sqrt{\alpha^2 + \beta^2} + \beta) + \beta(\sqrt{\alpha^2 + \beta^2} - \alpha)]

    =(α2+β2)(α+β)= (\alpha^2 + \beta^2)(\alpha + \beta)

  106. We have to prove that 2tan1[tanα2tan(π4β2)]=tan1[sinαcosβsinβ+cosα].2\tan^{-1}\left[\tan\frac{\alpha}{2}\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)\right] = \tan^{-1}\left[\frac{\sin\alpha\cos\beta}{\sin\beta + \cos\alpha}\right].

    L.H.S. =2tan1[tanα2tan(π4β2)]= 2\tan^{-1}\left[\tan\frac{\alpha}{2}\tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)\right]

    =2tan1[tanα21tanβ21+tanβ2]= 2\tan^{-1}\left[\tan\frac{\alpha}{2}\frac{1 - \tan\frac{\beta}{2}}{1 + \tan\frac{\beta}{2}}\right]

    =tan1[2tanα21tanβ21+tanβ21tan2α2(1tanβ2)2(1+tanβ2)2]= \tan^{-1}\left[\frac{2\tan\frac{\alpha}{2}\frac{1 - \tan\frac{\beta}{2}}{1 + \tan\frac{\beta}{2}}}{1 - \tan^2\frac{\alpha}{2}\frac{\left(1 - \tan\frac{\beta}{2}\right)^2}{\left(1 + \tan\frac{\beta}{2}\right)^2}}\right]

    Substituting tanα2=sinα2cosα2\tan\frac{\alpha}{2} = \frac{\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} and tanβ2=sinα2cosβ2\tan\frac{\beta}{2} = \frac{\sin\frac{\alpha}{2}}{\cos\frac{\beta}{2}} and simplifying we arrive at the desired result.

  107. R.H.S. =tan1[tan2(α+beta)tan2(αβ)]+tan11= \tan^{-1}[\tan^2(\alpha + beta)\tan^2(\alpha - \beta)] + \tan^{-1}1

    =tan1[1+tan2(α+β)tan2(αbeta)1tan2(α+β)tan2(αbeta)]= \tan^{-1}\left[\frac{1 + \tan^2(\alpha + \beta)\tan^{2}(\alpha - beta)}{1 - \tan^2(\alpha + \beta)\tan^{2}(\alpha - beta)}\right]

    =tan1[cos2(α+β)cos2(αβ)+sin2(α+β)sin2(αβ)cos2(α+β)cos2(αβ)sin2(α+β)sin2(αβ)]= \tan^{-1}\left[\frac{\cos^2(\alpha + \beta)\cos^2(\alpha - \beta) + \sin^2(\alpha + \beta)\sin^2(\alpha - \beta)}{\cos^2(\alpha + \beta)\cos^2(\alpha - \beta) - \sin^2(\alpha + \beta)\sin^2(\alpha - \beta)}\right]

    =tan1[4cos2(α+β)cos2(αβ)+4sin2(α+β)sin2(αβ)4cos2(α+β)cos2(αβ)4sin2(α+β)sin2(αβ)]= \tan^{-1}\left[\frac{4\cos^2(\alpha + \beta)\cos^2(\alpha - \beta) + 4\sin^2(\alpha + \beta)\sin^2(\alpha - \beta)}{4\cos^2(\alpha + \beta)\cos^2(\alpha - \beta) - 4\sin^2(\alpha + \beta)\sin^2(\alpha - \beta)}\right]

    =tan1[{2cos(α+β)cos(αβ)}2+{2sin(α+β)sin(αβ)}2{2cos(α+β)cos(αβ)}2{2sin(α+β)sin(αβ)}2]= \tan^{-1}\left[\frac{\{2\cos(\alpha + \beta)\cos(\alpha - \beta)\}^2 + \{2\sin(\alpha + \beta)\sin(\alpha - \beta)\}^2}{\{2\cos(\alpha + \beta)\cos(\alpha - \beta)\}^2 - \{2\sin(\alpha + \beta)\sin(\alpha - \beta)\}^2}\right]

    =tan1[(cos2α+cos2β)2+(cos2βcos2α)2cos2α+cos2β)2(cos2βcos2α)2]=\tan^{-1}\left[\frac{(\cos2\alpha + \cos2\beta)^2 + (\cos2\beta - \cos2\alpha)^2}{\cos2\alpha + \cos2\beta)^2 - (\cos2\beta - \cos2\alpha)^2}\right]

    =tan1[2cos2α+2cos2β4cos2αcosβ]= \tan^{-1}\left[\frac{2\cos^2\alpha + 2\cos^2\beta}{4\cos2\alpha\cos\beta}\right]

    =tan1[12cos2αsec2β+12cosβsecα]== \tan^{-1}\left[\frac{1}{2}\cos2\alpha\sec2\beta + \frac{1}{2}\cos\beta\sec\alpha\right] = L.H.S.

  108. Let 34x2x2=t34x24x2=t2\sqrt{\frac{3 - 4x^2}{x^2}} = t \Rightarrow \sqrt{\frac{3 - 4x^2}{4x^2}} = \frac{t}{2}

    \therefore R.H.S. =2tan1t2tan1t= 2\tan^{-1}\frac{t}{2} - \tan^{-1}t

    =tan1t1t24tan1t=tan14t4t2tan1t= \tan{-1}\frac{t}{1 - \frac{t^2}{4}} - \tan^{-1}t = \tan^{-1}\frac{4t}{4 - t^2} - tan^{-1}t

    =tan14t4t2t1+4t24t2=tan1t34+3t2= \tan^{-1}\frac{\frac{4t}{4 - t^2} - t}{1 + \frac{4t^2}{4 - t^2}} = tan^{-1}\frac{t^3}{4 + 3t^2}

    cot1y1x2y2=tan1t34+3t2\Rightarrow \cot^{-1}\frac{y}{\sqrt{1 - x^2 - y^2}} = \tan^{-1}\frac{t^3}{4 + 3t^2}

    1x2y2y2=t69t4+24t2+16\Rightarrow \frac{1 - x^2 - y^2}{y^2} = \frac{t^6}{9t^4 + 24t^2 + 16}

    1x2y21=t69t4+24t2+16\Rightarrow \frac{1 - x^2}{y^2} - 1 = \frac{t^6}{9t^4 + 24t^2 + 16}

    1x2y2=t6+9t4+24t2+169t4+24t2+16\Rightarrow \frac{1 - x^2}{y^2} = \frac{t^6 + 9t^4 + 24t^2 + 16}{9t^4 + 24t^2 + 16}

    y2=9t4+24t2+16t6+9t4+24t2+16(1x2)\Rightarrow y^2 = \frac{9t^4 + 24t^2 + 16}{t^6 + 9t^4 + 24t^2 + 16}(1 - x^2)

    We know that t2+4=3x2t^2 + 4 = \frac{3}{x^2} from our initial equation.

    y2=(t2+4)2+8t4+16t2(t2+1)(t2+4)2(1x2)\Rightarrow y^2 = \frac{(t^2 + 4)^2 + 8t^4 + 16t^2}{(t^2 + 1)(t^2 + 4)^2}(1 - x^2)

    Substituting for tt and simplifying, we obtain

    27y2=81x2144x4+64x627y^2 = 81x^2 -144x^4 + 64x^6

  109. Given mtan(αθ)cos2θ=ntanθcos2(αθ)\frac{m\tan(\alpha - \theta)}{\cos^2\theta} = \frac{n\tan\theta}{\cos^2(\alpha - \theta)}

    mn=sinθcosθsin(αθ)cos(αθ)=sin2θsin2(αθ)\Rightarrow \frac{m}{n} = \frac{\sin\theta\cos\theta}{\sin(\alpha - \theta)\cos(\alpha - \theta)} = \frac{\sin2\theta}{\sin2(\alpha - \theta)}

    Doing componendo and dividendo, we get

    nmm+n=sin2(αθ)sin2θsin2θ+sin2(αθ)\frac{n - m}{m + n} = \frac{\sin2(\alpha - \theta) - \sin2\theta}{\sin2\theta + \sin2(\alpha - \theta)}

    nmm+n=cosαsin(α2θ)sinαcos(α2θ)\Rightarrow \frac{n - m}{m + n} = \frac{\cos\alpha\sin(\alpha - 2\theta)}{\sin\alpha\cos(\alpha - 2\theta)}

    nmm+n=tan(α2θ)tanα\Rightarrow \frac{n - m}{m + n} = \frac{\tan(\alpha - 2\theta)}{\tan\alpha}

    α2θ=tan1(nmm+n)tanα\Rightarrow \alpha - 2\theta = \tan^{-1}\left(\frac{n - m}{m + n}\right)\tan\alpha

    θ=12[αtan1(nmn+m)tanα]\Rightarrow \theta = \frac{1}{2}\left[\alpha - \tan^{-1}\left(\frac{n - m}{n + m}\right)\tan\alpha\right]

  110. Given, sin1xa+sin1yb=sin1c2ab\sin^{-1}\frac{x}{a} + \sin^{-1}\frac{y}{b} = \sin^{-1}\frac{c^2}{ab}

    sin1xa=sin1c2absin1yb\Rightarrow \sin^{-1}\frac{x}{a} = \sin^{-1}\frac{c^2}{ab} - \sin^{-1}\frac{y}{b}

    xa=c2ab1y2b2yb1c4a2b2\Rightarrow \frac{x}{a} = \frac{c^2}{ab}\sqrt{1 - \frac{y^2}{b^2}} - \frac{y}{b}\sqrt{1 - \frac{c^4}{a^2b^2}}

    xa+yb1c4a2b2=c2ab1y2b2\Rightarrow \frac{x}{a} + \frac{y}{b}\sqrt{1 - \frac{c^4}{a^2b^2}} = \frac{c^2}{ab}\sqrt{1 - \frac{y^2}{b^2}}

    Squaring both sides

    x2a2+y2b2(1c4a2b2)+2xyab1c4a2b2=c4a2b2(1y2b2)\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2}\left(1 - \frac{c^4}{a^2b^2}\right) + \frac{2xy}{ab}\sqrt{1 - \frac{c^4}{a^2b^2}} = \frac{c^4}{a^2b^2}\left(1 - \frac{y^2}{b^2}\right)

    b2x2+2xya2b2c4=c4a2y2\Rightarrow b^2x^2 + 2xy\sqrt{a^2b^2 - c^4} = c^4 - a^2y^2

  111. We have to prove that tan1t+tan12t1t2=tan13tt313t2\tan^{-1}t + \tan^{-1}\frac{2t}{1 - t^2} = \tan^{-1}\frac{3t - t^3}{1 - 3t^2}

    L.H.S. =tan1t+2tan1t=3tan1t=tan13tt313t2= \tan^{-1}t + 2\tan^{-1}t = 3\tan^{-1}t = \tan^{-1}\frac{3t - t^3}{1 - 3t^2}

  112. If a>x>ba>x>b or a<x<ba<x<b then the fractions under square root are positive and less than one. So the angles are defined.

    cos1axab=sin11axab=sin1xbab\cos^{-1}\sqrt{\frac{a - x}{a - b}} = \sin^{-1}\sqrt{1 - \frac{a - x}{a - b}} = \sin^{-1}\sqrt{\frac{x - b}{a - b}}

  113. Given, cos1p+cos11p+cos11q=3π4\cos^{-1}\sqrt{p} + \cos^{-1}\sqrt{1 - p} + \cos^{-1}\sqrt{1 - q} = \frac{3\pi}{4}.

    cos1p+sin1p+cos11q=3π4\Rightarrow \cos^{-1}\sqrt{p} + \sin^{-1}\sqrt{p} + \cos^{-1}\sqrt{1 - q} = \frac{3\pi}{4}

    π2+cos11q=3π4\Rightarrow \frac{\pi}{2} + \cos^{-1}\sqrt{1 - q} = \frac{3\pi}{4}

    cos11q=π41q=12q=12\Rightarrow \cos^{-1}\sqrt{1 - q} = \frac{\pi}{4}\Rightarrow 1 - q = \frac{1}{2} \Rightarrow q = \frac{1}{2}

    For cos1p\cos^{-1}\sqrt{p} to be defined 0p10\leq p\leq 1 and then cos11p\cos^{-1}\sqrt{1 - p} will also be defined.

  114. Given, tan1x+cot1y=tan13\tan^{-1}x + \cot^{-1}y = \tan^{-1}3

    tan1x+tan11y=tan13\Rightarrow \tan^{-1}x + \tan^{-1}\frac{1}{y} = \tan^{-1}3

    tan1x+1y1xy=tan13\Rightarrow \tan^{-1}\frac{x + \frac{1}{y}}{1 - \frac{x}{y}} = \tan^{-1}3

    xy+1yx=3y=3x+13x\Rightarrow \frac{xy + 1}{y - x} = 3 \Rightarrow y = \frac{3x + 1}{3 - x}

    When xx is positive, numerator is positive. For denominator to be positive x=1,2x = 1, 2 (considering only integral values). Corresponding values of y=2,7y = 2, 7. We can see that both solutions satisfy the original equation.

  115. Given sin1axc+sin1bxc=sin1x\sin^{-1}\frac{ax}{c} + \sin^{-1}\frac{bx}{c} = \sin^{-1}x so we can infer 1x1-1\leq x\leq 1

    Also given, a2+b2=c2a2x2c2+b2x2c2=x2a^2 + b^2 = c^2 \Rightarrow \frac{a^2x^2}{c^2} + \frac{b^2x^2}{c^2} = x^2

    From first equation, axc1b2x2c2+bxc1a2x2c2=x\frac{ax}{c}\sqrt{1 - \frac{b^2x^2}{c^2}} + \frac{bx}{c}\sqrt{1 - \frac{a^2x^2}{c^2}} = x

    x[axc1b2x2c2+bxc1a2x2c21]=0\Rightarrow x\left[\frac{ax}{c}\sqrt{1 - \frac{b^2x^2}{c^2}} + \frac{bx}{c}\sqrt{1 - \frac{a^2x^2}{c^2}} - 1\right] = 0

    Either x=0x = 0 or ac1b2x2c2+bc1a2x2c2=0\frac{a}{c}\sqrt{1 - \frac{b^2x^2}{c^2}} + \frac{b}{c}\sqrt{1 - \frac{a^2x^2}{c^2}} = 0

    ac2b2x2+bc2a2x2=c2\Rightarrow a\sqrt{c^2 - b^2x^2} + b\sqrt{c^2 - a^2x^2} = c^2

    ac2b2x2=c2bc2a2x2\Rightarrow a\sqrt{c^2 - b^2x^2} = c^2 - b\sqrt{c^2 - a^2x^2}

    a2c2a2b2x2=c4+b2c2a2b2x22bc2c2a2x2\Rightarrow a^2c^2 - a^2b^2x^2 = c^4 + b^2c^2 - a^2b^2x^2 - 2bc^2\sqrt{c^2 - a^2x^2}

    a2c2b2c2c4=2bc2c2a2x2\Rightarrow a^2c^2 - b^2c^2 - c^4 = 2bc^2\sqrt{c^2 - a^2x^2}

    a2b2c2=2bc2a2x2\Rightarrow a^2 - b^2 - c^2 = -2b\sqrt{c^2 - a^2x^2}

    2b2=2bc2a2x2[a2+b2=c2]\Rightarrow -2b^2 = -2b\sqrt{c^2 - a^2x^2}[\because a^2 + b^2 = c^2]

    b=c2a2x2a2x2=c2b2=a2x=±1\Rightarrow b = \sqrt{c^2 - a^2x^2} \Rightarrow a^2x^2 = c^2 - b^2 = a^2 \Rightarrow x = \pm 1

    Clearly, x=0,±1x = 0, \pm 1 satisfy the equation.

  116. Let f(x)=sin[2cos1{cot(2tan1x)}]f(x) = \sin[2\cos^{-1}\{\cot(2\tan^{-1}x)\}]

    =sin[2cos1{cottan12x1x2}]= \sin\left[2\cos^{-1}\left\{\cot \tan^{-1}\frac{2x}{1 - x^2}\right\}\right]

    =sin[2cos1(cotcot11x22x)]= \sin\left[2\cos^{-1}\left(\cot\cot^{-1}\frac{1 - x^2}{2x}\right)\right]

    =sin[2cos11x22x]= \sin\left[2\cos^{-1}\frac{1 - x^2}{2x}\right]

    =sinsin1[2.1x22x1(1x22x)2]= \sin\sin^{-1}\left[2.\frac{1 - x^2}{2x}\sqrt{1- \left(\frac{1 - x^2}{2x}\right)^2}\right]

    =1x2x1(1x22x)2= \frac{1 - x^2}{x}\sqrt{1 - \left(\frac{1 - x^2}{2x}\right)^2}

    When f(x)=0,f(x) = 0, we have (1x2)1(1x22x)2=0(1 - x^2)\sqrt{1 - \left(\frac{1 - x^2}{2x}\right)^2} = 0

    (1x2)6x21x4=0\Rightarrow (1 - x^2)\sqrt{6x^2 - 1 - x^4} = 0

    Either 1x2=01 - x^2 = 0 or 6x21x4=0\sqrt{6x^2 - 1 - x^4} = 0

    x=±1\Rightarrow x = \pm1 or x46x2+1=0x^4 - 6x^2 + 1 = 0

    x2=6±3642=3±22=(1±2)2x^2 = \frac{6\pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2} = (1 \pm \sqrt{2})^2

    x=±(1±2)x = \pm(1 \pm \sqrt{2})

    x=±1,±(1±2)x = \pm 1, \pm(1 \pm \sqrt{2})

  117. 3sin2θ5+4cos2θ=3.2tanθ1+tan2θ5+41tan2θ1+tan2θ\frac{3\sin2\theta}{5 + 4\cos2\theta} = \frac{3.\frac{2\tan\theta}{1 + \tan^2\theta}}{5 + 4\frac{1 - \tan^2\theta}{1 + \tan^2\theta}}

    =6tanθ9+tan2θ=2tanϕ1+tan2ϕ= \frac{6\tan\theta}{9 + \tan^2\theta} = \frac{2\tan\phi}{1 + \tan^2\phi} where 13tanθ=tanϕ\frac{1}{3}\tan\theta = \tan\phi

    =sin2ϕ= \sin2\phi

    Given equation is θ=tan1(2tan2θ)12sin1(3sin2θ5+4cos2θ)\theta = \tan^{-1}(2\tan^2\theta) - \frac{1}{2}\sin^{-1}\left(\frac{3\sin2\theta}{5 + 4\cos2\theta}\right)

    tan1(2tan2θ)12sin1sin2ϕ=θ\Rightarrow \tan^{-1}(2\tan^2\theta) - \frac{1}{2}\sin^{-1}\sin2\phi = \theta

    tan1(2tan2θ)tan113tanθ=θ\Rightarrow \tan^{-1}(2\tan^2\theta) - \tan^{-1}\frac{1}{3}\tan\theta = \theta

    tan1[2tan2θ13tanθ1+2tan2θ.13tanθ]=θ\Rightarrow \tan^{-1}\left[\frac{2\tan^2\theta - \frac{1}{3}\tan\theta}{1 + 2\tan^2\theta.\frac{1}{3}\tan\theta}\right] = \theta

    tanθ(2tanθ13)1+23tan3θ=tanθ\Rightarrow \frac{\tan\theta\left(2\tan\theta - \frac{1}{3}\right)}{1 + \frac{2}{3}\tan^3\theta} = \tan\theta

    tanθ[6tanθ13+2tan2θ1]=0\Rightarrow \tan\theta\left[\frac{6\tan\theta - 1}{3 + 2\tan^2\theta} - 1\right] = 0

    If tanθ=0θ=nπ\tan\theta = 0 \Rightarrow \theta = n\pi

    If 6tanθ13+2tan3θ1=0\frac{6\tan\theta - 1}{3 + 2\tan^3\theta} - 1 = 0

    tan3θ3tanθ+2=0(tanθ1)2(tanθ+2)=0\Rightarrow \tan^3\theta - 3\tan\theta + 2 = 0 \Rightarrow (\tan\theta - 1)^2(\tan\theta + 2) = 0

    Either tanθ=1θ=nπ+π4\tan\theta = 1 \Rightarrow \theta = n\pi + \frac{\pi}{4}

    or tanθ=2θ=nπ+tan1(2)\tan\theta = -2 \Rightarrow \theta = n\pi + \tan^{-1}(-2)

  118. tan12x+tan13x=π4\tan^{-1}2x + \tan^{-1}3x = \frac{\pi}{4}

    tan13x=π4tan12x\Rightarrow \tan^{-1}3x = \frac{\pi}{4} - \tan^{-1}2x

    3x=tan(π4tan12x)\Rightarrow 3x = \tan\left(\frac{\pi}{4} - \tan^{-1}2x\right)

    3x=1tan(tan12x)1+tan(tan12x)=12x1+2x3x = \frac{1 - \tan(\tan^{-1}2x)}{1 + \tan(\tan^{-1}2x)} = \frac{1 - 2x}{1 + 2x}

    6x2+3x=12x6x2+5x1=0\Rightarrow 6x^2 + 3x = 1 - 2x \Rightarrow 6x^2 + 5x - 1 = 0

    (x+1)(6x1)=0\Rightarrow (x + 1)(6x - 1) = 0

    x=1,16\Rightarrow x = -1, \frac{1}{6}

    When x=1x = -1 L.H.S. is negative angle but R.H.S. is positive so it is not a solution. However, for x=16x = \frac{1}{6} satisfies both sides are positive and balanced.

  119. Given, sin1(x1+x2)+cos1(x21+x22)=π2\sin^{-1}\left(\frac{x}{1 + \frac{x}{2}}\right) + \cos^{-1}\left(\frac{x^2}{1 + \frac{x^2}{2}}\right) = \frac{\pi}{2}

    sin1(2xx+2)=π2cos1(2x22+x2)=sin1(2x22+x2)\Rightarrow \sin^{-1}\left(\frac{2x}{x + 2}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{2x^2}{2 + x^2}\right) = \sin^{-1}\left(\frac{2x^2}{2 + x^2}\right)

    2x2+x=2x22+x2\Rightarrow \frac{2x}{2 + x} = \frac{2x^2}{2 + x^2}

    2x[12+xx2+x2]=0\Rightarrow 2x\left[\frac{1}{2 + x} - \frac{x}{2 + x^2}\right] = 0

    x=0\Rightarrow x = 0 or 2+x2=2x+x2x=12 + x^2 = 2x + x^2 \Rightarrow x = 1

    But 0<x<2x=10 < |x| < \sqrt{2} \Rightarrow x = 1

  120. Given, tan1x(x+1)+sin1x2+x+1=π2\tan^{-1}\sqrt{x(x + 1)} + \sin^{-1}\sqrt{x^2 + x + 1} = \frac{\pi}{2}

    tan1x(x+1)+tan1x2+x+1x(x+1)=π2\Rightarrow \tan^{-1}\sqrt{x(x + 1)} + \tan^{-1}\frac{\sqrt{x^2 + x + 1}}{\sqrt{x(x + 1)}} = \frac{\pi}{2}

    tan1[x(x+1)+x2+x+1x(x+1)1x(x+1).x2+x+1x(x+1)]=π2\tan^{-1}\left[\frac{\sqrt{x(x + 1)} + \frac{\sqrt{x^2 + x + 1}}{\sqrt{x(x + 1)}}}{1 - \sqrt{x(x + 1)}.\frac{\sqrt{x^2 + x + 1}}{\sqrt{x(x + 1)}}}\right] = \frac{\pi}{2}

    1x2+x+1=0\Rightarrow 1 - \sqrt{x^2 + x + 1} = 0

    x=0,1\Rightarrow x = 0, -1

    Clearly both these values of xx satisfy the equation.

  121. This problem is similar to 115 so x=1,0,1x = -1, 0, 1.

  122. We have to solve sin1(1x)2sin1x=π2\sin^{-1}(1 - x) - 2\sin^{-1}x = \frac{\pi}{2}

    Let x=sinyx = \sin y

    sin1(1siny)2y=π2\Rightarrow \sin^{-1}(1 - \sin y) - 2y = \frac{\pi}{2}

    sin1(1siny)=π2+2y\Rightarrow \sin^{-1}(1 - \sin y) =\frac{\pi}{2} + 2y

    1siny=sin(π2+2y)=cos2y=12sin2y\Rightarrow 1 - \sin y = \sin\left(\frac{\pi}{2} + 2y\right) = \cos2y = 1 - 2\sin^2y

    2sin2ysiny=0\Rightarrow 2\sin^2y - \sin y = 0

    2x2x=0\Rightarrow 2x^2 - x = 0

    x=0,12x = 0, \frac{1}{2}

    But x=12x = \frac{1}{2} does not satisfy the equation but x=0x = 0 does so it is the required solution.

  123. Given equation is tan1x+tan1y=tan1k\tan^{-1}x + \tan^{-1}y = \tan^{-1}k

    tan1x+y1xy=tan1k\Rightarrow \tan^{-1}\frac{x + y}{1 - xy} = \tan^{-1}k

    x+y1xy=k\Rightarrow \frac{x + y}{1 - xy} = k

    For k>0,1xy>0xy<1k > 0, 1 - xy > 0 \Rightarrow xy < 1 which implies both xx and yy cannot be positive integers.

  124. We have to solve tan1x+1x1+tan1x1x=tan1(7)\tan^{-1}\frac{x + 1}{x - 1} + \tan^{-1}\frac{x - 1}{x} = \tan^{-1}(-7)

    x+1x1+x1x1x+1x1.x1x=7\Rightarrow \frac{\frac{x + 1}{x - 1} + \frac{x - 1}{x}}{1 - \frac{x + 1}{x - 1}.\frac{x - 1}{x}} = -7

    x2+x+x22x+1x2xx2+1=7\Rightarrow \frac{x^2 + x + x^2 - 2x + 1}{x^2 - x - x^2 + 1} = -7

    2x2x+1=7x7\Rightarrow 2x^2 - x + 1 = 7x - 7

    2x28x+8=0x24x+4=0x=2\Rightarrow 2x^2 - 8x + 8 = 0 \Rightarrow x^2 - 4x + 4 = 0 \Rightarrow x = 2

  125. We have to solve tan11a1=tan11x+tan11a2x+1\tan^{-1}\frac{1}{a - 1} = \tan^{-1}\frac{1}{x} + \tan^{-1}\frac{1}{a^2 - x + 1}

    1a1=a2+1a2xx2+x1\Rightarrow \frac{1}{a - 1} = \frac{a^2 + 1}{a^2x - x^2 + x - 1}

    (ax)(a2ax+1)=0\Rightarrow (a - x)(a^2 - a - x + 1) = 0

    x=a,a2a+1x = a, a^2 - a + 1

  126. We have to solve cos1x21x2+1+tan12xx21=2π3\cos^{-1}\frac{x^2 - 1}{x^2 + 1} + \tan^{-1}\frac{2x}{x^2 - 1} = \frac{2\pi}{3}

    Case I: When x>1x > 1 given equation becomes π2tan1x+π2tan1x=2π3\pi - 2\tan^{-1}x + \pi - 2\tan^{-1}x= \frac{2\pi}{3}

    tan1x=π3x=3\Rightarrow \tan^{-1}x = \frac{\pi}{3} \Rightarrow x = \sqrt{3}

    Case II: When x<1x < 1 given equation becomes π2tan1x2tan1x=2π3\pi - 2\tan^{-1}x - 2\tan^{-1}x = \frac{2\pi}{3}

    x=tanπ12=313+1=23\Rightarrow x = \tan\frac{\pi}{12} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = 2 - \sqrt{3}

  127. Given θ=tan1x32kx\theta = \tan^{-1}\frac{x\sqrt{3}}{2k - x} and ϕ=tan12xkk3\phi = \tan^{-1}\frac{2x - k}{k\sqrt{3}}.

    θϕ=tan1x32kx2xkk31+xk.2xk2kx\theta - \phi = \tan^{-1}\frac{\frac{x\sqrt{3}}{2k - x} - \frac{2x - k}{k\sqrt{3}}}{1 + \frac{x}{k}.\frac{2x - k}{2k - x}}

    =tan113.2k2+2x22kx2k2+2x22kx= \tan^{-1}\frac{1}{\sqrt{3}}.\frac{2k^2 + 2x^2 - 2kx}{2k^2 + 2x^2 - 2kx}

    If 2x2+2k22kx02x^2 + 2k^2 - 2kx\neq 0 then θϕ=tan113=π6\theta - \phi = \tan^{-1}\frac{1}{\sqrt{3}} = \frac{\pi}{6}

  128. Given tan1x+cos1y1+y2=sin1310\tan^{-1}x + \cos^{-1}\frac{y}{\sqrt{1 + y^2}} = \sin^{-1}\frac{3}{\sqrt{10}}

    tan11y=tan13tan1x\Rightarrow \tan^{-1}\frac{1}{y} = \tan^{-1}3 - \tan^{-1}x

    1y=3x1+3x\Rightarrow \frac{1}{y} = \frac{3 - x}{1 + 3x}

    y=1+3x3xy = \frac{1 + 3x}{3 - x}

    Clearly, for x3x \geq 3 there can be no solution as yy becomes infinity and negative for those values.

    When x=1,y=2x = 1, y = 2 and when x=2,y=7x = 2, y = 7.

  129. Given equation is an identity except for range. For sin1s1x2\sin^{-1}s\sqrt{1 - x^2} range is [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]

    For 2cos1x2\cos^{-1}x range is [0,2π][0, 2\pi] so common range is [0,π2]\left[0, \frac{\pi}{2}\right]

    02cos1xπ2\Rightarrow 0 \leq 2\cos^{-1}x \leq \frac{\pi}{2}

    12x1\Rightarrow \frac{1}{\sqrt{2}}\leq x \leq 1, since cos\cos is a decreasing function, so inequality is reversed.

  130. We have to solve sin1x1+x2sin111+x2=sin11+x1+x2\sin^{-1}\frac{x}{\sqrt{1 + x^2}} - \sin^{-1}\frac{1}{\sqrt{1 + x^2}} = \sin^{-1}\frac{1 + x}{1 + x^2}

    sin1x211+x2=sin11+x1+x2\Rightarrow \sin^{-1}\frac{x^2 - 1}{1 + x^2} = \sin^{-1}\frac{1 + x}{1 + x^2}

    x2x2=0x=1,2\Rightarrow x^2 - x - 2 = 0 \Rightarrow x = -1, 2

    However, the equation is not satisfied for x=1x = -1 hence x=2x = 2 is the required solution.

  131. Given equation is y=2tan1[aba+btanx2]cos1[b+acosxa+bcosx]y = 2\tan^{-1}\left[\sqrt{\frac{a - b}{a + b}}\tan\frac{x}{2}\right] - \cos^{-1}\left[\frac{b + a\cos x}{a + b\cos x}\right]

    R.H.S. =tan12aba+btanx21aba+btan2x2tan1a2b2sinxb+acosx= \tan^{-1}\frac{2\sqrt{\frac{a - b}{a + b}}\tan\frac{x}{2}}{1 - \frac{a - b}{a + b}\tan^2\frac{x}{2}} - \tan^{-1}\frac{\sqrt{a^2 - b^2}\sin x}{b + a\cos x}

    =tan12a2b2tanx2(a+b)(ab)tan2x2tan12a2b2tanx2(a+b)(ab)tan2x2= \tan^{-1}\frac{2\sqrt{a^2 - b^2}\tan\frac{x}{2}}{(a + b) - (a - b)\tan^2\frac{x}{2}} - \tan^{-1}\frac{2\sqrt{a^2 - b^2}\tan\frac{x}{2}}{(a + b) - (a - b)\tan^2\frac{x}{2}}

    =0= 0 which is a constant provided ab>0a \geq b > 0

  132. tan12i2+i2+i4=tan1(i2+i+1)tan1(i2i+1)tan^{-1}\frac{2i}{2 + i^2 + i^4} = \\tan^{-1}(i^2 + i + 1) - \tan^{-1}(i^2 - i + 1)

    Subtituting i=1,i = 1, R.H.S. = tan^{-1}3 - tan^{-1}1

    Subtituting i=2,i = 2, R.H.S. = tan^{-1}7 - tan^{-1}3

    Subtituting i=3,i = 3, R.H.S. = tan^{-1}13 - tan^{-1}7

    \ldots

    Subtituting i=n1,i = n - 1, R.H.S. = tan^{-1}(n^2 - n + 1) - tan^{-1}(n^2 - 3n + 3)

    Subtituting i=n,i = n, R.H.S. = tan^{-1}(n^2 + n + 1) - tan^{-1}(n^2 - n + 1)

    Adding, we get i=1ntan12i2+i2+i4=tan1(n2+n+1)tan11\sum_{i=1}^{n}\tan^{-1}\frac{2i}{2 + i^2 + i^4} = \tan^{-1}(n^2 + n + 1) - \tan^{-1}1

    =tan1n2+nn2+n+2= \tan^{-1}\frac{n^2 + n}{n^2 + n + 2}

  133. tn=cot1(n2+34)=cot1(4n2+34)t_n = \cot^{-1}\left(n^2 + \frac{3}{4}\right) = \cot^{-1}\left(\frac{4n^2 + 3}{4}\right)

    =tan111+n414=(n+12)(n12)1+(n+12)(n12)= \tan^{-1}\frac{1}{1 + n^4 - \frac{1}{4}} = \frac{\left(n + \frac{1}{2}\right) - \left(n - \frac{1}{2}\right)}{1 + \left(n + \frac{1}{2}\right)\left(n - \frac{1}{2}\right)}

    =tan1(n+12)tan1(n12)= \tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(n - \frac{1}{2}\right)

    Putting n=1,t1=tan132tan112n = 1, t_1 = \tan^{-1}\frac{3}{2} - \tan^{-1}\frac{1}{2}

    Putting n=2,t2=tan152tan132n = 2, t_2 = \tan^{-1}\frac{5}{2} - \tan^{-1}\frac{3}{2}

    \ldots

    Putting n=,t=tan1(+12)tan1(12)n = \infty, t_\infty = \tan^{-1}\left(\infty + \frac{1}{2}\right) - \tan^{-1}\left(\infty - \frac{1}{2}\right)

    Adding, we get S=tan1(+12)tan112S = \tan^{-1}\left(\infty + \frac{1}{2}\right) - \tan^{-1}\frac{1}{2}

    =π2tan112=cot112=tan12= \frac{\pi}{2} - \tan^{-1}\frac{1}{2} = \cot^{-1}\frac{1}{2} = \tan^{-1}2

  134. We know that tan1x+cot1x=π2\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}

    So given equation can be written as (tan1x+cot1x)2tan1x(π2tan1x)=5π28(\tan^{-1}x + \cot^{-1}x) - 2\tan^{-1}x\left(\frac{\pi}{2} - \tan^{-1}x\right) = \frac{5\pi^2}{8}

    2(tan1x)πtan1x3π28=0\Rightarrow 2(\tan^{-1}x) - \pi\tan^{-1}x - \frac{3\pi^2}{8} = 0

    tan1x=π4,3π4x=1\Rightarrow \tan^{-1}x = -\frac{\pi}{4}, \frac{3\pi}{4} \Rightarrow x = -1

  135. (sin1x+cos1x)3=(sin1x+cos1x)[(sin1x+cos1x)23sin1xcos1x](\sin^{-1}x + \cos^{-1}x)^3 = (\sin^{-1}x + \cos^{-1}x)[(\sin^{-1}x + \cos^{-1}x)^2 - 3\sin^{-1}x\cos^{-1}x]

    =π2[π243sin1x(π2sin1x)]= \frac{\pi}{2}\left[\frac{\pi^2}{4} - 3\sin^{-1}x\left(\frac{\pi}{2} - \sin^{-1}x\right)\right]

    =3π2[(sin1xπ4)2+π248]= \frac{3\pi}{2}\left[\left(\sin^{-1}x - \frac{\pi}{4}\right)^2 + \frac{\pi^2}{48}\right]

    Least value of sin1π4=0\sin^{-1} - \frac{\pi}{4} = 0 and greatest value is 3π4\frac{3\pi}{4}

    Hence greatest and least values of the required expression are 7π38\frac{7\pi^3}{8} and π232\frac{\pi^2}{32}.

  136. Let cos1x=a[0,π]\cos^{-1}x = a \in [0, \pi] and sin1y=b[π2,π2]\sin^{-1}y = b \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]

    We have a+b2=pπ24a + b^2 = \frac{p\pi^2}{4} and ab2=π416ab^2 = \frac{\pi^4}{16}

    Since b2[0,π2/4]b^2\in [0, \pi^2/4], we get a+b2[0,π+π2/4]a + b^2 \in [0, \pi + \pi^2/4]

    0pπ24π+π24\Rightarrow 0 \leq \frac{p\pi^2}{4}\leq \pi + \frac{\pi^2}{4}

    0p4π+1\Rightarrow 0\leq p\leq \frac{4}{\pi} + 1

    So p=0,1,2p = 0, 1, 2

    a(pπ24a)=π216\Rightarrow a\left(\frac{p\pi^2}{4} - a\right) = \frac{\pi^2}{16}

    Since aRD0a\in R \Rightarrow D\geq 0

    p24p=2p^2 \geq 4\Rightarrow p = 2

  137. Given tan1x,tan1y,tan1z\tan^{-1}x, \tan^{-1}y, \tan^{-1}z are in A.P.

    2tan1y=tan1x+tan1z\Rightarrow 2\tan^{-1}y = \tan^{-1}x + \tan^{-1}z

    2y1y2=x+z1xz\Rightarrow \frac{2y}{1 - y^2} = \frac{x + z}{1 - xz}

    If x,y,zx, y, z are in A.P. 2y=x+z2y = x + z

    1(x+z)24=1xz\Rightarrow 1 - \frac{(x + z)^2}{4} = 1 - xz

    (xz)2=0x=y=z\Rightarrow (x - z)^2 = 0 \Rightarrow x = y = z

  138. tn=tan1x1+n(n+1)x2=tan1(n+1)xtan1nxt_n = \tan^{-1}\frac{x}{1 + n(n + 1)x^2} = \tan^{-1}(n + 1)x - \tan^{-1}nx

    t1=tan12xtan1xt_1 = \tan^{-1}2x - \tan^{-1}x

    t2=tan13xtan12xt_2 = \tan^{-1}3x - \tan^{-1}2x

    \ldots

    tn=tan1(n+1)xtan1nxt_n = \tan^{-1}(n + 1)x - \tan^{-1}nx

    Adding, we get S=tan1(n+1)xtan1x=tan1nx1+(n+1)x2=S = \tan^{-1}(n + 1)x - \tan^{-1}x = \tan^{-1}\frac{nx}{1 + (n + 1)x^2} = R.H.S.