12.1. Multiple Angles
An angle of the form nA, where n is an integer is called a multiple angle. For example, 2A,3A,4A,… are multiple angles of A.
12.1.1. Trigonometrical Ratios of 2A
From previous chapter we know that sin(A+B)=sinAcosB+cosAsinB
Substituting B=A, we get
sin2A=2sinAcosA
Similarly, cos2A=cos2A−sin2A=2cos2A−1=1−2sin2A (recall formula from previous chapter and substitute
B=A cos2A=1−sin2A and sin2A=1−cos2a)
Also, tan2A=1−tan2A2tanA (recall formula from previous chapter and put B=A)
12.1.2. sin2A and cos2A in terms of tanA
sin2A=sin2A+cos2A2sinAcosA[∵sin2A+cos2A=1]
Dividing both numerator and denominator by cos2A, we get
sin2A=1+tan2A2tanA
cosA=cos2A−sin2A=cos2A+sin2Acos2A−sin2A[∵sin2A+cos2A=1]
Dividing both numerator and denominator by cos2A, we get
cos2A=1+tan2A1−tan2A=cot2A+1cot2A−1
12.1.3. Trigonometrical Ratios of 3A
sin3A=sin2AcosA+cos2AsinA=2sinAcos2A+cos2AsinA−sin3A
=2sinA(1−sin2A)+(1−2sin2A)sinA−sin3A
=3sinA−4sin3A
cos3A=cos2AcosA−sin2AsinA=(2cos2A−1)cosA−2sin2AcosA
=2cos3A−cosA−2(1−cos2A)cosA
=4cos3A−3cosA
We know that tan(A+B+C)=1−tanAtanB−tanBtanC−tanCtanAtanA+tanB+tanC−tanAtanBtanC
Putting B=A and C=A, we get
tan3A=1−3tan2A3tanA−tan3A
Similarly cot3A=3cot2A−1cot3A−3cotA
12.2. Submultiple Angles
An angle of the form nA, where n is an integer is called a submultiple angle. For exmaple,
2A,3A,4A,… are submultiple angles of A.
12.2.1. Trigonometrical Ratios of A/2
We know that, sin2A=2sinAcosA. Putting A=A/2, we get
sinA=2sinA/2cosA/2
cos2A=cos2A−sinA. Putting A=A/2, we get
cosA−cos22A−sin22A
cos2A=2cos2A−1. Putting A=A/2, we get
cosA=2cos22A−1
cos2A=1−2sin2A. Putting A=A/2, we get
cosA=1−2sin22A
tan2A=1−tan2A2tanA. Putting A=A/2, we get
tanA=1−tan22A2tan2A
sin2A=1+tan2A2tanA∴sinA=1+tan22A2tan2A
cos2A=1+tan2A1−tan2A∴cosA=1+tan22A1−tan22A
cot2A=2cotAcot2A−1∴cotA=2cot2Acot22A−1
12.2.2. Trigonometrical Ratios of A/3
sin3A=3sinA−4sin3A. Putting A=3A, we get
sinA=sin3A3−4sin33A
cos3A=4cos3A−3cosA. Putting A=3A, we get
cosA=4cos33A−3cos3A
tan3A=1−3tan2A3tanA−tan3A
tanA=1−3tan23A3tan3A−tan33A
12.2.3. Values of cosA/2,sinA/2 and tanA/2 in terms of cosA
cos22A=21+cosA∴cos2A=21+cosA
sin22A=1−cosA2∴sin2A=21−cosA
tan22A=1+cosA1−cosA∴tan2A=1+cosA1−cosA
12.2.4. Values of sinA/2 and cosA/2 in terms of sinA
(cos2A+sin2A)2=cos22A+sin22A+2cos2Asin2A
=1+sinA⇒cos2A+sin2A=1+sinA
Similarly, cos2A−sin2A=1−sinA
Adding, we get cos2A=±211+sinA±211−sinA
Subtracting, we get cos2A=±211+sinA∓211−sinA
12.2.5. Value of sin18∘ and cos72∘
Let A=18∘, then sin5A=90∘∴2A+3A=90∘
sin2A=sin(90∘−sin3A)∴2sinAcosA=4cos3A−3cosA
Dividing both sides by cosA, we get
2sinA=4cos2A−3=4(1−sin2A)−3
4sin2A+2sinA−1=0
sinA=4−1±5
However, since A=18∘∴sinA>0
∴sin18∘=4−1+5
∴sin(90∘−18∘)=cos72∘=45−1
12.2.6. Value of cos18∘ and sin72∘
cos218∘=1−sin218∘=1−(45−1)2
=1610+25∴cos18∘=4110+25[∵cos18∘>0]
cos(90∘−18∘)=sin72∘=4110+25
12.2.7. Value of tan18∘ and tan72∘
tan18∘=cos18∘sin18∘=10+255−1
tan18∘cot18∘=1⇒tan72∘=tan18∘1=5−110+25
x
Value of cos36∘ and sin54∘
——————————————————–
cos36∘=1−2sin218∘=1−2(45−1)2
=45+1
sin54∘=sin(90∘−36∘)=cos36∘=45+1
12.2.8. Value of sin36∘ and cos54∘
sin36∘=1−cos236∘=1−(45+1)2
=4110−25
cos54∘=cos(90∘−36∘)=sin36∘=4110−25
Several other angles like, 9∘,15∘,2221∘,721∘ etc can be found similarrly.