Let us solve these one by one.
Given, cos A = 3 5 \cos A = \frac{3}{5} cos A = 5 3
⇒ sin A = 1 − cos 2 A = 1 − 9 25 = 16 25 = 4 5 \Rightarrow \sin A = \sqrt{1 - \cos^2A} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} ⇒ sin A = 1 − cos 2 A = 1 − 25 9 = 25 16 = 5 4
sin 2 A = 2 sin A cos A = 2. 4 5 . 3 5 = 24 25 \sin 2A = 2\sin A\cos A = 2.\frac{4}{5}.\frac{3}{5} = \frac{24}{25} sin 2 A = 2 sin A cos A = 2. 5 4 . 5 3 = 25 24
Given, sin A = 12 13 \sin A = \frac{12}{13} sin A = 13 12
⇒ cos A = 1 − sin 2 A = 1 − 144 169 = 25 169 = 5 13 \Rightarrow \cos A = \sqrt{1 - \sin^2A} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13} ⇒ cos A = 1 − sin 2 A = 1 − 169 144 = 169 25 = 13 5
sin 2 A = 2 sin A cos A = 2. 12 13 . 5 13 = 120 169 \sin 2A = 2\sin A\cos A = 2.\frac{12}{13}.\frac{5}{13} = \frac{120}{169} sin 2 A = 2 sin A cos A = 2. 13 12 . 13 5 = 169 120
Given, tan A = 16 63 = perpendicular base \tan A = \frac{16}{63} = \frac{\text{perpendicular}}{\text{base}} tan A = 63 16 = base perpendicular
hypotenuse = p 2 + b 2 = 1 6 2 + 6 3 2 = 65 \text{hypotenuse} = \sqrt{p^2 + b^2} = \sqrt{16^2 + 63^2} = 65 hypotenuse = p 2 + b 2 = 1 6 2 + 6 3 2 = 65
sin A = 16 65 , cos A = 63 65 \sin A = \frac{16}{65}, \cos A = \frac{63}{65} sin A = 65 16 , cos A = 65 63
sin 2 A = 2 sin A cos A = 2. 16 65 . 63 65 = 2016 4225 \sin 2A = 2\sin A\cos A = 2.\frac{16}{65}.\frac{63}{65} = \frac{2016}{4225} sin 2 A = 2 sin A cos A = 2. 65 16 . 65 63 = 4225 2016
Let us solve these one by one.
Given, cos A = 15 17 \cos A = \frac{15}{17} cos A = 17 15
⇒ sin A = 1 − cos 2 A \Rightarrow \sin A = \sqrt{1 - \cos^2A} ⇒ sin A = 1 − cos 2 A = 1 − 225 289 = 64 289 = 8 17 = \sqrt{1 - \frac{225}{289}} = \sqrt{\frac{64}{289}} = \frac{8}{17} = 1 − 289 225 = 289 64 = 17 8
cos 2 A = cos 2 A − sin 2 A = 225 − 64 289 = 161 289 \cos 2A = \cos^2A - \sin^2A = \frac{225 - 64}{289} = \frac{161}{289} cos 2 A = cos 2 A − sin 2 A = 289 225 − 64 = 289 161
Given, sin A = 4 5 \sin A = \frac{4}{5} sin A = 5 4
⇒ cos A = 1 − sin 2 A \Rightarrow \cos A = \sqrt{1 - \sin^2A} ⇒ cos A = 1 − sin 2 A = 1 − 16 25 = 3 5 = \sqrt{1 - \frac{16}{25}} = \frac{3}{5} = 1 − 25 16 = 5 3
cos 2 A = cos 2 A − sin 2 A = 9 − 16 25 = − 7 25 \cos2A = \cos^2A - \sin^2A = \frac{9 - 16}{25} = -\frac{7}{25} cos 2 A = cos 2 A − sin 2 A = 25 9 − 16 = − 25 7
Give, tan A = 5 12 = perpendicular base \tan A = \frac{5}{12} = \frac{\text{perpendicular}}{\text{base}} tan A = 12 5 = base perpendicular
hypotenuse = p 2 + b 2 = 25 + 144 = 13 \text{hypotenuse} = \sqrt{p^2 + b^2} = \sqrt{25 + 144} = 13 hypotenuse = p 2 + b 2 = 25 + 144 = 13
sin A = 5 13 , cos A = 12 13 \sin A = \frac{5}{13}, \cos A = \frac{12}{13} sin A = 13 5 , cos A = 13 12
cos 2 A = cos 2 A − sin 2 A = 119 169 \cos^2A = \cos^2A - \sin^2A = \frac{119}{169} cos 2 A = cos 2 A − sin 2 A = 169 119
Given, tan A = b a , \tan A = \frac{b}{a}, tan A = a b , thus hypotenuse = b 2 + a 2 \text{hypotenuse} = \sqrt{b^2 + a^2} hypotenuse = b 2 + a 2
a cos 2 A + b sin 2 A = a ( cos 2 A − sin 2 A ) + 2 b sin A cos A a\cos 2A+ b\sin 2A = a(\cos^2A - \sin^2A) + 2b\sin A\cos A a cos 2 A + b sin 2 A = a ( cos 2 A − sin 2 A ) + 2 b sin A cos A
= a ( a 2 a 2 + b 2 − b 2 a 2 + b 2 ) + 2 b . a b a 2 + b 2 = a\left(\frac{a^2}{a^2 + b^2} - \frac{b^2}{a^2 + b^2}\right) + 2b.\frac{ab}{a^2 + b^2} = a ( a 2 + b 2 a 2 − a 2 + b 2 b 2 ) + 2 b . a 2 + b 2 ab
= a ( a 2 − b 2 + 2 b 2 a 2 + b 2 ) = a = a\left(\frac{a^2 - b^2 + 2b^2}{a^2 + b^2}\right) = a = a ( a 2 + b 2 a 2 − b 2 + 2 b 2 ) = a
We have to prove that sin 2 A 1 + cos 2 A = tan A \frac{\sin 2A}{1 + \cos 2A} = \tan A 1 + c o s 2 A s i n 2 A = tan A
L.H.S. = sin 2 A 1 + cos 2 A = 2 sin A cos A 1 + cos 2 A − sin 2 A = \frac{\sin 2A}{1 + \cos 2A} = \frac{2\sin A\cos A}{1 + \cos^2A - \sin^2A} = 1 + c o s 2 A s i n 2 A = 1 + c o s 2 A − s i n 2 A 2 s i n A c o s A
= 2 sin A cos A 2 cos 2 A [ ∵ 1 − sin 2 A = cos 2 A ] = \frac{2\sin A\cos A}{2\cos^2A}[\because 1 - \sin^2A = \cos^2A] = 2 c o s 2 A 2 s i n A c o s A [ ∵ 1 − sin 2 A = cos 2 A ]
= tan A = = \tan A = = tan A = R.H.S.
We have to prove that sin 2 A 1 − cos 2 A = cot A \frac{\sin 2A}{1 - \cos 2A} = \cot A 1 − c o s 2 A s i n 2 A = cot A
L.H.S. = sin 2 A 1 − cos 2 A = 2 sin A cos A 1 − ( cos 2 A − sin 2 A ) = \frac{\sin 2A}{1 - \cos 2A} = \frac{2\sin A\cos A}{1 -(\cos^2A - \sin^2A)} = 1 − c o s 2 A s i n 2 A = 1 − ( c o s 2 A − s i n 2 A ) 2 s i n A c o s A
= 2 sin A cos A 2 sin 2 A = cot A = = \frac{2\sin A\cos A}{2\sin^2A} = \cot A = = 2 s i n 2 A 2 s i n A c o s A = cot A = R.H.S.
We have to prove that 1 − cos 2 A 1 + cos 2 A = tan 2 A \frac{1 - \cos 2A}{1 + \cos 2A} = \tan^2A 1 + c o s 2 A 1 − c o s 2 A = tan 2 A
L.H.S. = 1 − ( cos 2 A − sin 2 A ) 1 + cos 2 A − sin 2 A = \frac{1 - (\cos^2A - \sin^2A)}{1 + \cos^2A - \sin^2A} = 1 + c o s 2 A − s i n 2 A 1 − ( c o s 2 A − s i n 2 A )
= 2 sin 2 A 2 cos 2 A = tan 2 A = = \frac{2\sin^2A}{2\cos^2A} = \tan^2A = = 2 c o s 2 A 2 s i n 2 A = tan 2 A = R.H.S.
We have to prove that tan A + cot A = 2 cosec 2 A \tan A + \cot A = 2\cosec 2A tan A + cot A = 2 cosec 2 A
L.H.S. = sin A cos A + cos A sin A = sin 2 A + cos 2 A sin A cos A = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \frac{\sin^2A + \cos^2A}{\sin A\cos A} = c o s A s i n A + s i n A c o s A = s i n A c o s A s i n 2 A + c o s 2 A
= 2 2 sin A cos A = 2 sin 2 A = 2 cosec 2 A = = \frac{2}{2\sin A\cos A} = \frac{2}{\sin 2A} = 2\cosec 2A = = 2 s i n A c o s A 2 = s i n 2 A 2 = 2 cosec 2 A = R.H.S.
We have to prove that tan A − cot A = − 2 cot 2 A \tan A - \cot A = -2\cot2A tan A − cot A = − 2 cot 2 A
L.H.S. = sin A cos A − cos A sin A = sin 2 A − cos 2 A sin A cos A = \frac{\sin A}{\cos A} - \frac{\cos A}{\sin A} = \frac{\sin^2A - \cos^2A}{\sin A\cos A} = c o s A s i n A − s i n A c o s A = s i n A c o s A s i n 2 A − c o s 2 A
= − cos 2 A sin 2 A 2 = − 2 cot 2 A = = \frac{-\cos2A}{\frac{\sin2A}{2}} = -2\cot2A = = 2 s i n 2 A − c o s 2 A = − 2 cot 2 A = R.H.S.
We have to prove that cosec 2 A + cot 2 A = cot A \cosec 2A + \cot 2A = \cot A cosec 2 A + cot 2 A = cot A
L.H.S. = 1 sin 2 A + cos 2 A sin 2 A = 1 + cos 2 A sin 2 A = 2 cos 2 A 2 sin A cos A = \frac{1}{\sin 2A} + \frac{\cos 2A}{\sin 2A} = \frac{1 + \cos 2A}{\sin 2A} = \frac{2\cos^2A}{2\sin A\cos A} = s i n 2 A 1 + s i n 2 A c o s 2 A = s i n 2 A 1 + c o s 2 A = 2 s i n A c o s A 2 c o s 2 A
= cot A = = \cot A = = cot A = R.H.S.
We have to prove that 1 − cos A + cos B − cos ( A + B ) 1 + cos A − cos B − cos ( A + B ) = tan A 2 cot B 2 \frac{1 - \cos A + \cos B - \cos(A + B)}{1 + \cos A - \cos B - \cos(A + B)} =
\tan\frac{A}{2}\cot\frac{B}{2} 1 + c o s A − c o s B − c o s ( A + B ) 1 − c o s A + c o s B − c o s ( A + B ) = tan 2 A cot 2 B
L.H.S. = 1 − cos A + cos B − cos ( A + B ) 1 + cos A − cos B − cos ( A + B ) = \frac{1 - \cos A + \cos B - \cos(A + B)}{1 + \cos A - \cos B - \cos(A + B)} = 1 + c o s A − c o s B − c o s ( A + B ) 1 − c o s A + c o s B − c o s ( A + B )
= 2 sin 2 A 2 + 2 sin A 2 sin ( A 2 + B ) 2 cos 2 A 2 − 2 cos A 2 cos ( A 2 + B ) = \frac{2\sin^2\frac{A}{2} + 2\sin\frac{A}{2}\sin\left(\frac{A}{2} + B\right)}{2\cos^2\frac{A}{2} -
2\cos\frac{A}{2}\cos\left(\frac{A}{2} + B\right)} = 2 c o s 2 2 A − 2 c o s 2 A c o s ( 2 A + B ) 2 s i n 2 2 A + 2 s i n 2 A s i n ( 2 A + B )
= sin A 2 ( sin A 2 + sin ( A 2 + B ) ) cos A 2 ( cos A 2 − cos ( A 2 + B ) ) = \frac{\sin\frac{A}{2}\left(\sin\frac{A}{2} + \sin \left(\frac{A}{2} +
B\right)\right)}{\cos\frac{A}{2}\left(\cos\frac{A}{2} - \cos\left(\frac{A}{2} + B\right)\right)} = c o s 2 A ( c o s 2 A − c o s ( 2 A + B ) ) s i n 2 A ( s i n 2 A + s i n ( 2 A + B ) )
= tan A 2 ( 2 sin ( A + B 2 ) cos B 2 ) 2 sin ( A + B 2 ) sin B 2 = \frac{\tan\frac{A}{2}\left(2\sin\left(\frac{A + B}{2}\right)\cos\frac{B}{2}\right)}{2\sin\left(\frac{A +
B}{2}\right)\sin\frac{B}{2}} = 2 s i n ( 2 A + B ) s i n 2 B t a n 2 A ( 2 s i n ( 2 A + B ) c o s 2 B )
= tan A 2 cot B 2 = \tan\frac{A}{2}\cot\frac{B}{2} = tan 2 A cot 2 B
We have to prove that cos A 1 ∓ sin A = tan ( 4 5 ∘ ± A 2 ) \frac{\cos A}{1 \mp \sin A} = \tan\left(45^\circ \pm \frac{A}{2}\right) 1 ∓ s i n A c o s A = tan ( 4 5 ∘ ± 2 A )
First considering − - − sign on L.H.S.,
L.H.S. = cos A 1 − sin A = cos 2 A 2 − sin 2 A 2 ( cos A 2 − sin A 2 ) 2 = \frac{\cos A}{1 - \sin A} = \frac{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}{\left(\cos\frac{A}{2} -
\sin\frac{A}{2}\right)^2} = 1 − s i n A c o s A = ( c o s 2 A − s i n 2 A ) 2 c o s 2 2 A − s i n 2 2 A
Dividing numerator and denomiator by cos 2 A 2 \cos^2\frac{A}{2} cos 2 2 A
= 1 − tan 2 A 2 ( 1 − tan A 2 ) 2 = \frac{1 - \tan^2\frac{A}{2}}{\left(1 - \tan\frac{A}{2}\right)^2} = ( 1 − t a n 2 A ) 2 1 − t a n 2 2 A
= 1 + tan A 2 1 − tan A 2 = \frac{1 + \tan\frac{A}{2}}{1 - \tan\frac{A}{2}} = 1 − t a n 2 A 1 + t a n 2 A
= tan 4 5 ∘ + tan A 2 1 − tan 4 5 ∘ tan A 2 = tan ( 4 5 ∘ + A 2 ) = \frac{\tan45^\circ + \tan\frac{A}{2}}{1 - \tan45^\circ\tan\frac{A}{2}} = \tan\left(45^\circ + \frac{A}{2}\right) = 1 − t a n 4 5 ∘ t a n 2 A t a n 4 5 ∘ + t a n 2 A = tan ( 4 5 ∘ + 2 A )
Similarly by considering the + + + sign we can prove the other sign.
We have to prove that sec 8 A − 1 sec 4 A − 1 = tan 8 A tan 2 A \frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\tan 8A}{\tan 2A} s e c 4 A − 1 s e c 8 A − 1 = t a n 2 A t a n 8 A
L.H.S. = sec 8 A − 1 sec 4 A − 1 = 1 − cos 8 A 1 − cos 4 A . cos 4 A cos 8 A = \frac{\sec 8A - 1}{\sec 4A - 1} = \frac{1 - \cos 8A}{1 - \cos 4A}.\frac{\cos4A}{\cos8A} = s e c 4 A − 1 s e c 8 A − 1 = 1 − c o s 4 A 1 − c o s 8 A . c o s 8 A c o s 4 A
= 2 sin 2 4 A 2 sin 2 2 A . cos 4 A cos 8 A = ( 2 sin 4 A cos 4 A ) . sin 4 A 2 sin 2 2 A . cos 8 A = \frac{2\sin^24A}{2\sin^22A}.\frac{\cos 4A}{\cos8A} = \frac{(2\sin4A\cos4A).\sin4A}{2\sin^22A.\cos8A} = 2 s i n 2 2 A 2 s i n 2 4 A . c o s 8 A c o s 4 A = 2 s i n 2 2 A . c o s 8 A ( 2 s i n 4 A c o s 4 A ) . s i n 4 A
= sin 8 A cos 8 A . sin 4 A 2 sin 2 2 A = tan 8 A . 2 sin 2 A cos 2 A 2 sin 2 2 A = tan 8 A tan 2 A = = \frac{\sin8A}{\cos8A}.\frac{\sin4A}{2\sin^22A} = \frac{\tan8A. 2\sin2A\cos2A}{2\sin^22A} = \frac{\tan8A}{\tan2A} = = c o s 8 A s i n 8 A . 2 s i n 2 2 A s i n 4 A = 2 s i n 2 2 A t a n 8 A .2 s i n 2 A c o s 2 A = t a n 2 A t a n 8 A =
R.H.S.
We have to prove that 1 + tan 2 ( 4 5 ∘ − A ) 1 − tan 2 ( 4 5 ∘ − A ) = cosec 2 A \frac{1 + \tan^2(45^\circ - A)}{1 - \tan^2(45^\circ - A)} = \cosec 2A 1 − t a n 2 ( 4 5 ∘ − A ) 1 + t a n 2 ( 4 5 ∘ − A ) = cosec 2 A
L.H.S. = 1 + tan 2 ( 4 5 ∘ − A ) 1 − tan 2 ( 4 5 ∘ − A ) = \frac{1 + \tan^2(45^\circ - A)}{1 - \tan^2(45^\circ - A)} = 1 − t a n 2 ( 4 5 ∘ − A ) 1 + t a n 2 ( 4 5 ∘ − A )
= cos 2 ( 4 5 ∘ − A ) + sin 2 ( 4 5 ∘ − A ) cos 2 ( 4 5 ∘ − A ) − sin 2 ( 4 5 ∘ − A ) = \frac{\cos^2(45^\circ - A) + \sin^2(45^\circ - A)}{\cos^2(45^\circ - A) - \sin^2(45^\circ - A)} = c o s 2 ( 4 5 ∘ − A ) − s i n 2 ( 4 5 ∘ − A ) c o s 2 ( 4 5 ∘ − A ) + s i n 2 ( 4 5 ∘ − A )
= 1 cos ( 9 0 ∘ − 2 A ) = 1 sin 2 A = cosec 2 A = = \frac{1}{\cos(90^\circ - 2A)} = \frac{1}{\sin2A} = \cosec2A = = c o s ( 9 0 ∘ − 2 A ) 1 = s i n 2 A 1 = cosec 2 A = R.H.S.
We have to prove that sin A + sin B sin A − sin B = tan A + B 2 tan A − B 2 \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{A + B}{2}}{\tan \frac{A - B}{2}} s i n A − s i n B s i n A + s i n B = t a n 2 A − B t a n 2 A + B
L.H.S. = sin A + sin B sin A − sin B = 2 sin A + B 2 cos A − B 2 2 cos A + B 2 sin A − B 2 = \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{2\sin\frac{A + B}{2}\cos\frac{A - B}{2}}{2\cos\frac{A +
B}{2}\sin\frac{A - B}{2}} = s i n A − s i n B s i n A + s i n B = 2 c o s 2 A + B s i n 2 A − B 2 s i n 2 A + B c o s 2 A − B
= tan A + B 2 tan A − B 2 = = \frac{\tan \frac{A + B}{2}}{\tan \frac{A - B}{2}} = = t a n 2 A − B t a n 2 A + B = R.H.S.
We have to prove that sin 2 A − sin 2 B sin A cos A − sin B cos B = tan ( A + B ) \frac{\sin^2A - \sin^2B}{\sin A\cos A - \sin B\cos B} = \tan(A + B) s i n A c o s A − s i n B c o s B s i n 2 A − s i n 2 B = tan ( A + B )
L.H.S. = 2 ( cos 2 B − cos 2 A ) sin 2 A − sin 2 B = cos 2 B − cos 2 A sin 2 A − sin 2 B = \frac{2(\cos^2B - \cos^2A)}{\sin2A - \sin2B} = \frac{\cos2B - \cos2A}{\sin2A - \sin2B} = s i n 2 A − s i n 2 B 2 ( c o s 2 B − c o s 2 A ) = s i n 2 A − s i n 2 B c o s 2 B − c o s 2 A
= sin ( A + B ) sin ( A − B ) cos ( A + B ) sin ( A − B ) = tan ( A + B ) = = \frac{\sin(A + B)\sin(A - B)}{\cos(A + B)\sin(A - B)} = \tan(A + B) = = c o s ( A + B ) s i n ( A − B ) s i n ( A + B ) s i n ( A − B ) = tan ( A + B ) = R.H.S.
We have to prove that tan ( π 4 + A ) − tan ( π 4 − A ) = 2 tan 2 A \tan\left(\frac{\pi}{4} + A\right) - \tan\left(\frac{\pi}{4} - A\right) = 2\tan 2A tan ( 4 π + A ) − tan ( 4 π − A ) = 2 tan 2 A
L.H.S. = 1 + tan A 1 − tan A − 1 − tan A 1 + tan A = \frac{1 + \tan A}{1 - \tan A} - \frac{1 - \tan A}{1 + \tan A} = 1 − t a n A 1 + t a n A − 1 + t a n A 1 − t a n A
= ( 1 + tan A ) 2 − ( 1 − tan A ) 2 1 − tan 2 A = 4 tan A 1 − tan 2 A = \frac{(1 + \tan A)^2 - (1 - \tan A)^2}{1 - \tan^2A} = \frac{4\tan A}{1 - \tan^2A} = 1 − t a n 2 A ( 1 + t a n A ) 2 − ( 1 − t a n A ) 2 = 1 − t a n 2 A 4 t a n A
= 4 sin A cos A . cos 2 A cos 2 A − sin 2 A = 2 sin 2 A cos 2 A = 2 tan 2 A = = \frac{4\sin A}{\cos A}. \frac{\cos^2A}{\cos^2A - \sin^2A} = \frac{2\sin2A}{\cos2A} = 2\tan2A = = c o s A 4 s i n A . c o s 2 A − s i n 2 A c o s 2 A = c o s 2 A 2 s i n 2 A = 2 tan 2 A = R.H.S.
We have to prove that cos A + sin A cos A − sin A − cos A − sin A cos A + sin A = 2 tan 2 A \frac{\cos A + \sin A}{\cos A - \sin A} - \frac{\cos A - \sin A}{\cos A + \sin A} = 2\tan 2A c o s A − s i n A c o s A + s i n A − c o s A + s i n A c o s A − s i n A = 2 tan 2 A
L.H.S. = ( cos A + sin A ) 2 − ( cos A − sin A ) 2 cos 2 A − sin 2 A = \frac{(\cos A + \sin A)^2 - (\cos A - \sin A)^2}{\cos^2A - \sin^2A} = c o s 2 A − s i n 2 A ( c o s A + s i n A ) 2 − ( c o s A − s i n A ) 2
= 4 cos A sin A cos 2 A = 2 sin 2 A cos 2 A = 2 tan 2 A = = \frac{4\cos A\sin A}{\cos 2A} = \frac{2\sin 2A}{\cos 2A} = 2\tan2A = = c o s 2 A 4 c o s A s i n A = c o s 2 A 2 s i n 2 A = 2 tan 2 A = R.H.S.
We have to prove that cot ( A + 1 5 ∘ ) − tan ( A − 1 5 ∘ ) = 4 cos 2 A 1 + 2 sin 2 A \cot (A + 15^\circ) - \tan(A - 15^\circ) = \frac{4\cos 2A}{1 + 2\sin 2A} cot ( A + 1 5 ∘ ) − tan ( A − 1 5 ∘ ) = 1 + 2 s i n 2 A 4 c o s 2 A
L.H.S. = 1 − tan ( A + 1 5 ∘ ) tan ( A − 1 5 ∘ ) tan ( A + 1 5 ∘ ) = \frac{1 - \tan(A + 15^\circ)\tan(A - 15^\circ)}{\tan(A + 15^\circ)} = t a n ( A + 1 5 ∘ ) 1 − t a n ( A + 1 5 ∘ ) t a n ( A − 1 5 ∘ )
= cos ( A + 1 5 ∘ ) cos ( A − 1 5 ∘ ) − sin ( A + 1 5 ∘ ) sin ( A − 1 5 ∘ ) cos ( A + 1 5 ∘ ) cos ( A − 1 5 ∘ ) . cos ( A + 1 5 ∘ ) sin ( A + 1 5 ∘ ) = \frac{\cos(A + 15^\circ)\cos(A - 15^\circ) - \sin(A + 15^\circ)\sin(A - 15^\circ)}{\cos(A + 15^\circ)\cos(A -
15^\circ)}.\frac{\cos(A + 15^\circ)}{\sin(A + 15^\circ)} = c o s ( A + 1 5 ∘ ) c o s ( A − 1 5 ∘ ) c o s ( A + 1 5 ∘ ) c o s ( A − 1 5 ∘ ) − s i n ( A + 1 5 ∘ ) s i n ( A − 1 5 ∘ ) . s i n ( A + 1 5 ∘ ) c o s ( A + 1 5 ∘ )
= cos 2 A sin ( A + 1 5 ∘ ) cos ( A − 1 5 ∘ ) = 2 cos 2 A 2 sin ( A + 1 5 ∘ ) cos ( A − 1 5 ∘ ) = \frac{\cos 2A}{\sin(A + 15^\circ)\cos(A - 15^\circ)} = \frac{2\cos 2A}{2\sin(A + 15^\circ)\cos(A - 15^\circ)} = s i n ( A + 1 5 ∘ ) c o s ( A − 1 5 ∘ ) c o s 2 A = 2 s i n ( A + 1 5 ∘ ) c o s ( A − 1 5 ∘ ) 2 c o s 2 A
= 2 cos 2 A sin 2 A + sin 3 0 ∘ = 4 cos 2 A 1 + sin 2 A = = \frac{2\cos 2A}{\sin2A + \sin30^\circ} = \frac{4\cos 2A}{1 + \sin 2A} = = s i n 2 A + s i n 3 0 ∘ 2 c o s 2 A = 1 + s i n 2 A 4 c o s 2 A = R.H.S.
We have to prove that sin A + sin 2 A 1 + cos A + cos 2 A = tan A \frac{\sin A + \sin2A}{1 + \cos A + \cos 2A} = \tan A 1 + c o s A + c o s 2 A s i n A + s i n 2 A = tan A
L.H.S. = sin A + 2 sin A cos A cos A + 2 cos 2 A = sin A ( 1 + 2 cos A ) cos A ( 1 + 2 cos A ) = \frac{\sin A + 2\sin A\cos A}{\cos A + 2\cos^2A} = \frac{\sin A(1 + 2\cos A)}{\cos A(1 + 2\cos A)} = c o s A + 2 c o s 2 A s i n A + 2 s i n A c o s A = c o s A ( 1 + 2 c o s A ) s i n A ( 1 + 2 c o s A )
= tan A = = \tan A = = tan A = R.H.S.
We have to prove that 1 + sin A − cos A 1 + sin A + c o s A = tan A 2 \frac{1 + \sin A - \cos A }{1 + \sin A + cos A} = \tan \frac{A}{2} 1 + s i n A + cos A 1 + s i n A − c o s A = tan 2 A
L.H.S. = 2 sin 2 A 2 + 2 sin A 2 cos A 2 2 cos 2 A 2 + 2 sin A 2 cos A 2 = \frac{2\sin^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}}{2\cos^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}} = 2 c o s 2 2 A + 2 s i n 2 A c o s 2 A 2 s i n 2 2 A + 2 s i n 2 A c o s 2 A
= sin A 2 ( sin A 2 + cos A 2 ) cos A 2 ( sin A 2 + cos A 2 ) = \frac{\sin\frac{A}{2}(\sin\frac{A}{2} + \cos\frac{A}{2})}{\cos\frac{A}{2}(\sin\frac{A}{2} + \cos\frac{A}{2})} = c o s 2 A ( s i n 2 A + c o s 2 A ) s i n 2 A ( s i n 2 A + c o s 2 A )
= tan A 2 = = \tan\frac{A}{2} = = tan 2 A = R.H.S.
We have to prove that sin ( n + 1 ) A − sin ( n − 1 ) A cos ( n + 1 ) A + 2 cos n A + cos ( n − 1 ) A = tan A 2 \frac{\sin(n + 1)A - \sin(n - 1)A}{\cos(n + 1)A + 2\cos nA + \cos(n - 1)A} = \tan \frac{A}{2} c o s ( n + 1 ) A + 2 c o s n A + c o s ( n − 1 ) A s i n ( n + 1 ) A − s i n ( n − 1 ) A = tan 2 A
L.H.S. = 2 cos n A sin A 2 cos n A cos A + 2 cos n A = sin A 1 + cos A = \frac{2\cos nA \sin A}{2\cos nA \cos A + 2\cos nA} = \frac{\sin A}{1 + \cos A} = 2 c o s n A c o s A + 2 c o s n A 2 c o s n A s i n A = 1 + c o s A s i n A
= 2 sin A 2 cos A 2 2 cos 2 A 2 = tan A 2 = = \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{2\cos^2\frac{A}{2}} = \tan \frac{A}{2} = = 2 c o s 2 2 A 2 s i n 2 A c o s 2 A = tan 2 A = R.H.S.
We have to prove that sin ( n + 1 ) A + 2 sin n A + sin ( n − 1 ) A cos ( n − 1 ) − cos ( n + 1 ) A = cot A 2 \frac{\sin(n + 1)A + 2\sin nA + \sin(n - 1)A}{\cos(n - 1) - \cos(n + 1)A} = \cot \frac{A}{2} c o s ( n − 1 ) − c o s ( n + 1 ) A s i n ( n + 1 ) A + 2 s i n n A + s i n ( n − 1 ) A = cot 2 A
L.H.S. = 2 sin n A cos A + 2 sin n A 2 sin n A sin A = \frac{2\sin nA\cos A + 2\sin nA}{2\sin nA\sin A} = 2 s i n n A s i n A 2 s i n n A c o s A + 2 s i n n A
= cos A + 1 sin A = 2 cos 2 A 2 2 sin A 2 cos A 2 = \frac{\cos A + 1}{\sin A} = \frac{2\cos^2\frac{A}{2}}{2\sin\frac{A}{2}\cos\frac{A}{2}} = s i n A c o s A + 1 = 2 s i n 2 A c o s 2 A 2 c o s 2 2 A
= cot A 2 = = \cot\frac{A}{2} = = cot 2 A = R.H.S.
We have to prove that sin ( 2 n + 1 ) A sin A = sin 2 ( n + 1 ) A − sin 2 n A \sin(2n + 1)A\sin A = \sin^2(n + 1)A - \sin^2nA sin ( 2 n + 1 ) A sin A = sin 2 ( n + 1 ) A − sin 2 n A
R.H.S. = ( sin ( n + 1 ) A + sin n A ) ( sin ( n + 1 ) A − sin n A ) = (\sin(n + 1)A + \sin nA)(\sin(n + 1)A - \sin nA) = ( sin ( n + 1 ) A + sin n A ) ( sin ( n + 1 ) A − sin n A )
= ( 2 sin 2 n + 1 2 A cos A 2 ) ( 2 cos 2 n + 1 2 A sin A 2 ) = (2\sin\frac{2n + 1}{2}A\cos \frac{A}{2})(2\cos\frac{2n + 1}{2}A\sin \frac{A}{2}) = ( 2 sin 2 2 n + 1 A cos 2 A ) ( 2 cos 2 2 n + 1 A sin 2 A )
= 2 sin 2 n + 1 2 A cos 2 n + 1 2 A . 2 cos A 2 sin A 2 = 2\sin\frac{2n + 1}{2}A\cos\frac{2n + 1}{2}A.2\cos \frac{A}{2}\sin\frac{A}{2} = 2 sin 2 2 n + 1 A cos 2 2 n + 1 A .2 cos 2 A sin 2 A
= sin ( 2 n + 1 ) A sin A = = \sin(2n + 1)A\sin A = = sin ( 2 n + 1 ) A sin A = L.H.S.
We have to prove that sin ( A + 3 B ) + sin ( 3 A + B ) sin 2 A + sin 2 B = 2 cos ( A + B ) \frac{\sin(A + 3B) + \sin(3A + B)}{\sin 2A + \sin 2B} = 2\cos(A + B) s i n 2 A + s i n 2 B s i n ( A + 3 B ) + s i n ( 3 A + B ) = 2 cos ( A + B )
L.H.S. = sin ( A + 3 B ) + sin ( 3 A + B ) sin 2 A + sin 2 B = \frac{\sin(A + 3B) + \sin(3A + B)}{\sin 2A + \sin 2B} = s i n 2 A + s i n 2 B s i n ( A + 3 B ) + s i n ( 3 A + B )
= 2 sin ( 2 A + 2 B ) cos ( A − B ) 2 sin ( A + B ) cos ( A − B ) = \frac{2\sin(2A + 2B)\cos(A - B)}{2\sin(A + B)\cos(A - B)} = 2 s i n ( A + B ) c o s ( A − B ) 2 s i n ( 2 A + 2 B ) c o s ( A − B )
= 2 sin ( A + B ) cos ( A + B ) sin ( A + B ) = 2 cos ( A + B ) = = \frac{2\sin(A + B)\cos(A + B)}{\sin(A + B)} = 2\cos(A + B) = = s i n ( A + B ) 2 s i n ( A + B ) c o s ( A + B ) = 2 cos ( A + B ) = R.H.S.
We have to prove that sin 3 A + sin 2 A − sin A = 4 sin A cos A 2 cos 3 A 2 \sin 3A + \sin 2A - \sin A = 4\sin A\cos \frac{A}{2}\cos \frac{3A}{2} sin 3 A + sin 2 A − sin A = 4 sin A cos 2 A cos 2 3 A
L.H.S. = 2 cos 2 A sin A + 2 sin A cos A = 2 sin A ( cos 2 A + cos A ) = 2\cos 2A\sin A + 2\sin A\cos A = 2\sin A(\cos 2A + \cos A) = 2 cos 2 A sin A + 2 sin A cos A = 2 sin A ( cos 2 A + cos A )
= 2 sin A cos 3 A 2 cos A 2 = = 2\sin A\cos \frac{3A}{2}\cos\frac{A}{2} = = 2 sin A cos 2 3 A cos 2 A = R.H.S.
We have to prove that tan 2 A = ( sec 2 A + 1 ) sec 2 A − 1 \tan 2A = (\sec 2A + 1)\sqrt{\sec^2A - 1} tan 2 A = ( sec 2 A + 1 ) sec 2 A − 1
R.H.S. = 1 + cos 2 A cos 2 A 1 − cos 2 A cos 2 A = \frac{1 + \cos 2A}{\cos 2A}\sqrt{\frac{1 - \cos^2A}{\cos^2A}} = c o s 2 A 1 + c o s 2 A c o s 2 A 1 − c o s 2 A
= 2 cos 2 A 2 cos 2 A − 1 . sin 2 A cos 2 A = \frac{2\cos^2A}{2\cos^2A - 1}.\sqrt{\frac{\sin^2A}{\cos^2A}} = 2 c o s 2 A − 1 2 c o s 2 A . c o s 2 A s i n 2 A
= 2 2 − sec 2 A . t a n A = 2 tan A 1 − tan 2 A = tan A + tan A 1 − tan A . tan A = \frac{2}{2 - \sec^2A}.tan A = \frac{2\tan A}{1 - \tan^2A} = \frac{\tan A + \tan A}{1 - \tan A.\tan A} = 2 − s e c 2 A 2 . t an A = 1 − t a n 2 A 2 t a n A = 1 − t a n A . t a n A t a n A + t a n A
= tan 2 A = =\tan 2A = = tan 2 A = R.H.S.
We have to prove that cos 3 2 A + 3 cos 2 A = 4 ( cos 6 A − sin 6 A ) \cos^32A + 3\cos 2A = 4(\cos^6A - \sin^6A) cos 3 2 A + 3 cos 2 A = 4 ( cos 6 A − sin 6 A )
L.H.S. = ( cos 2 A − sin 2 A ) 3 + 3 ( cos 2 A − sin 2 A ) = (\cos^2A - \sin^2A)^3 + 3(\cos^2A - \sin^2A) = ( cos 2 A − sin 2 A ) 3 + 3 ( cos 2 A − sin 2 A )
= cos 6 A − 3 cos 4 A sin 2 A + 3 cos 2 A sin 4 A − sin 6 A + 3 ( cos 2 A − sin 2 A ) = \cos^6A -3\cos^4A\sin^2A + 3\cos^2A\sin^4A - \sin^6A + 3(\cos^2A - \sin^2A) = cos 6 A − 3 cos 4 A sin 2 A + 3 cos 2 A sin 4 A − sin 6 A + 3 ( cos 2 A − sin 2 A )
= cos 6 A − 3 cos 4 A ( 1 − cos 2 A ) + 3 ( 1 − sin 2 A ) sin 4 A − sin 6 A + 3 ( cos 2 A − sin 2 A ) = \cos^6A -3\cos^4A(1 - \cos^2A) + 3(1 - \sin^2A)\sin^4A - \sin^6A + 3(\cos^2A - \sin^2A) = cos 6 A − 3 cos 4 A ( 1 − cos 2 A ) + 3 ( 1 − sin 2 A ) sin 4 A − sin 6 A + 3 ( cos 2 A − sin 2 A )
= 4 ( cos 6 A − sin 6 A ) = = 4(\cos^6A - \sin^6A) = = 4 ( cos 6 A − sin 6 A ) = R.H.S.
We have to prove that 1 + cos 2 2 A = 2 ( cos 4 A + sin 4 A ) 1 + \cos^22A = 2(\cos^4A + \sin^4A) 1 + cos 2 2 A = 2 ( cos 4 A + sin 4 A )
L.H.S. = 1 + ( cos 2 A − sin 2 A ) 2 = 1 − 2 sin 2 A cos 2 A + cos 4 A + sin 4 A = 1 + (\cos^2A - \sin^2A)^2 = 1 - 2\sin^2A\cos^2A + \cos^4A + \sin^4A = 1 + ( cos 2 A − sin 2 A ) 2 = 1 − 2 sin 2 A cos 2 A + cos 4 A + sin 4 A
= 1 − 2 sin 2 A ( 1 − sin 2 A ) + cos 4 A + sin 4 A = 1 - 2\sin^2A(1 - \sin^2A) + \cos^4A + \sin^4A = 1 − 2 sin 2 A ( 1 − sin 2 A ) + cos 4 A + sin 4 A
= 1 − 2 sin 2 A + 2 sin 4 A + cos 4 A + sin 4 A = 1 - 2\sin^2A + 2\sin^4A + \cos^4A + \sin^4A = 1 − 2 sin 2 A + 2 sin 4 A + cos 4 A + sin 4 A
= ( 1 − sin 2 A ) 2 + cos 4 A + 2 sin 4 A = 2 ( cos 4 A + sin 4 A ) = = (1 - \sin^2A)^2 + \cos^4A + 2\sin^4A = 2(\cos^4A + \sin^4A) = = ( 1 − sin 2 A ) 2 + cos 4 A + 2 sin 4 A = 2 ( cos 4 A + sin 4 A ) = R.H.S.
We have to prove that sec 2 A ( 1 + sec 2 A ) = 2 sec 2 A \sec^2A(1 + \sec2A) = 2\sec2A sec 2 A ( 1 + sec 2 A ) = 2 sec 2 A
L.H.S. = 1 cos 2 A . cos 2 A + 1 cos 2 A = \frac{1}{\cos^2A}.\frac{\cos2A + 1}{\cos 2A} = c o s 2 A 1 . c o s 2 A c o s 2 A + 1
= 1 cos 2 A . 2 cos 2 A cos 2 A = 2 sec 2 A = = \frac{1}{\cos^2A}.\frac{2\cos^2A}{\cos 2A} = 2\sec2A = = c o s 2 A 1 . c o s 2 A 2 c o s 2 A = 2 sec 2 A = R.H.S.
We have to prove that cosec A − 2 cot 2 A cos A = 2 sin A \cosec A - 2\cot 2A\cos A = 2\sin A cosec A − 2 cot 2 A cos A = 2 sin A
L.H.S. = 1 sin A − 2 cos 2 A cos A sin 2 A = \frac{1}{\sin A} - \frac{2\cos 2A\cos A}{\sin 2A} = s i n A 1 − s i n 2 A 2 c o s 2 A c o s A
= 1 sin A − 2 cos 2 A cos A 2 sin A cos A = \frac{1}{\sin A} - \frac{2\cos 2A\cos A}{2\sin A\cos A} = s i n A 1 − 2 s i n A c o s A 2 c o s 2 A c o s A
1 sin A − cos 2 A sin A = 1 − cos 2 A sin A \frac{1}{\sin A} - \frac{\cos 2A}{\sin A} = \frac{1 - \cos 2A}{\sin A} s i n A 1 − s i n A c o s 2 A = s i n A 1 − c o s 2 A
= 2 sin 2 A sin A = 2 sin A = = \frac{2\sin^2A}{\sin A} = 2\sin A = = s i n A 2 s i n 2 A = 2 sin A = R.H.S.
We have to prove that cot A = 1 2 ( cot A 2 − tan A 2 ) \cot A = \frac{1}{2}\left(\cot\frac{A}{2} - \tan\frac{A}{2}\right) cot A = 2 1 ( cot 2 A − tan 2 A )
R.H.S. = 1 2 ( 1 − tan 2 A 2 tan A 2 ) = \frac{1}{2}\left(\frac{1 - \tan^2\frac{A}{2}}{\tan\frac{A}{2}}\right) = 2 1 ( t a n 2 A 1 − t a n 2 2 A )
= 1 2 ( cos 2 A 2 − sin 2 A 2 cos 2 A 2 ) . cos A 2 sin A 2 = \frac{1}{2}\left(\frac{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}{\cos^2\frac{A}{2}}\right).\frac{\cos\frac{A}{2}}{\sin
\frac{A}{2}} = 2 1 ( c o s 2 2 A c o s 2 2 A − s i n 2 2 A ) . s i n 2 A c o s 2 A
= 1 2 cos A cos A 2 . 1 sin A 2 = cot A = = \frac{1}{2}\frac{\cos A}{\cos\frac{A}{2}}.\frac{1}{\sin\frac{A}{2}} = \cot A = = 2 1 c o s 2 A c o s A . s i n 2 A 1 = cot A = L.H.S.
We have to prove that sin A sin ( 6 0 ∘ − A ) sin ( 6 0 ∘ + A ) = 1 4 sin 3 A \sin A\sin(60^\circ - A)\sin(60^\circ + A) = \frac{1}{4}\sin 3A sin A sin ( 6 0 ∘ − A ) sin ( 6 0 ∘ + A ) = 4 1 sin 3 A
L.H.S. = sin A . cos 2 A − cos 12 0 ∘ 2 = sin A ( 1 − 2 sin 2 A + 1 2 ) 2 =\sin A.\frac{\cos 2A - \cos 120^\circ}{2} = \frac{\sin A\left(1 - 2\sin^2A + \frac{1}{2}\right)}{2} = sin A . 2 c o s 2 A − c o s 12 0 ∘ = 2 s i n A ( 1 − 2 s i n 2 A + 2 1 )
= 3 sin A − 4 sin 3 A 4 = 1 4 sin 3 A = = \frac{3\sin A - 4\sin^3A}{4} = \frac{1}{4}\sin 3A = = 4 3 s i n A − 4 s i n 3 A = 4 1 sin 3 A = R.H.S.
We have to prove that cos A cos ( 6 0 ∘ − A ) cos ( 6 0 ∘ + A ) = 1 4 cos 3 A \cos A\cos(60^\circ - A)\cos(60^\circ + A) = \frac{1}{4}\cos 3A cos A cos ( 6 0 ∘ − A ) cos ( 6 0 ∘ + A ) = 4 1 cos 3 A
L.H.S. = cos A 2 ( cos 2 A + cos 12 0 ∘ ) = cos A 2 ( 2 cos 2 A − 1 − 1 2 ) = \frac{\cos A}{2}\left(\cos 2A + \cos120^\circ\right) = \frac{\cos A}{2}\left(2\cos^2A - 1 - \frac{1}{2}\right) = 2 c o s A ( cos 2 A + cos 12 0 ∘ ) = 2 c o s A ( 2 cos 2 A − 1 − 2 1 )
= 4 cos 3 A − 3 cos A 4 = 1 4 cos 3 A = = \frac{4\cos^3A - 3\cos A}{4} = \frac{1}{4}\cos 3A = = 4 4 c o s 3 A − 3 c o s A = 4 1 cos 3 A = R.H.S.
We have to prove that cot A + cot ( 6 0 ∘ + A ) − cot ( 6 0 ∘ − A ) = 3 cot 3 A \cot A + \cot(60^\circ + A) - \cot(60^\circ - A) = 3\cot 3A cot A + cot ( 6 0 ∘ + A ) − cot ( 6 0 ∘ − A ) = 3 cot 3 A
L.H.S. = 1 tan A + 1 tan ( 6 0 ∘ + A ) − 1 tan ( 6 0 ∘ − A ) = \frac{1}{\tan A} + \frac{1}{\tan(60^\circ + A)} - \frac{1}{\tan(60^\circ - A)} = t a n A 1 + t a n ( 6 0 ∘ + A ) 1 − t a n ( 6 0 ∘ − A ) 1
= 1 tan A + 1 − 3 tan A 3 + tan A − 1 + 3 tan A 3 − tan A = \frac{1}{\tan A} + \frac{1 - \sqrt{3}\tan A}{\sqrt{3} + \tan A} - \frac{1 + \sqrt{3}\tan A}{\sqrt{3} - \tan A} = t a n A 1 + 3 + t a n A 1 − 3 t a n A − 3 − t a n A 1 + 3 t a n A
= 1 tan A − 8 tan A 3 − tan 2 A = 3 ( 1 − 3 tan 2 A ) 3 tan A − tan 3 A = 3 tan 3 A = \frac{1}{\tan A} - \frac{8\tan A}{3 - \tan^2A} = \frac{3(1 - 3\tan^2A)}{3\tan A - \tan^3A} = \frac{3}{\tan 3A} = t a n A 1 − 3 − t a n 2 A 8 t a n A = 3 t a n A − t a n 3 A 3 ( 1 − 3 t a n 2 A ) = t a n 3 A 3
= 3 cot 3 A = = 3\cot 3A = = 3 cot 3 A = R.H.S.
We have to prove that cos 4 A = 1 − 8 cos 2 A + 8 cos 4 A \cos 4A = 1 - 8\cos^2A + 8\cos^4A cos 4 A = 1 − 8 cos 2 A + 8 cos 4 A
L.H.S. = cos 4 A = 2 cos 2 2 A − 1 = 2 ( 2 cos 2 A − 1 ) 2 − 1 = \cos 4A = 2\cos^22A - 1 = 2(2\cos^2A - 1)^2 - 1 = cos 4 A = 2 cos 2 2 A − 1 = 2 ( 2 cos 2 A − 1 ) 2 − 1
= 2 ( 4 cos 4 A − 4 cos 2 A + 1 ) − 1 =2(4\cos^4A - 4\cos^2A + 1) - 1 = 2 ( 4 cos 4 A − 4 cos 2 A + 1 ) − 1
= 1 − 8 cos 2 A + 8 cos 4 A = = 1 - 8\cos^2A + 8\cos^4A = = 1 − 8 cos 2 A + 8 cos 4 A = R.H.S.
We have to prove that sin 4 A = 4 sin A cos 3 A − 4 cos A sin 3 A \sin 4A = 4\sin A\cos^3A - 4\cos A\sin^3A sin 4 A = 4 sin A cos 3 A − 4 cos A sin 3 A
L.H.S. = 2 sin 2 A cos 2 A = 4 sin A cos A ( cos 2 A − sin 2 A ) = 2\sin 2A\cos 2A = 4\sin A\cos A(\cos^2A - \sin^2A) = 2 sin 2 A cos 2 A = 4 sin A cos A ( cos 2 A − sin 2 A )
= 4 sin A cos 3 A − 4 cos A sin 3 A = = 4\sin A\cos^3A - 4\cos A\sin^3A = = 4 sin A cos 3 A − 4 cos A sin 3 A = R.H.S.
We have to prove that cos 6 A = 32 cos 6 A − 48 cos 4 A + 18 cos 2 A − 1 \cos 6A = 32\cos^6A - 48\cos^4A + 18\cos^2A - 1 cos 6 A = 32 cos 6 A − 48 cos 4 A + 18 cos 2 A − 1
L.H.S. = cos 6 A = ( cos 2 3 A − sin 2 3 A ) = ( 4 cos 3 A − 3 cos A ) 2 − ( 3 sin A − 4 sin 3 A ) 2 = \cos 6A = (\cos^23A - \sin^23A) = (4\cos^3A - 3\cos A)^2 - (3\sin A - 4\sin^3A)^2 = cos 6 A = ( cos 2 3 A − sin 2 3 A ) = ( 4 cos 3 A − 3 cos A ) 2 − ( 3 sin A − 4 sin 3 A ) 2
= 16 cos 6 A + 9 cos 2 A − 24 cos 4 A − 9 sin 2 A − 16 sin 6 A + 24 sin 4 A = 16\cos^6A + 9\cos^2A -24\cos^4A - 9\sin^2A - 16\sin^6A + 24\sin^4A = 16 cos 6 A + 9 cos 2 A − 24 cos 4 A − 9 sin 2 A − 16 sin 6 A + 24 sin 4 A
= 16 cos 6 A + 9 cos 2 A − 24 cos 4 A − 9 ( 1 − cos 2 A ) − 16 ( 1 − cos 2 A ) 3 + 24 ( 1 − cos 2 A ) 2 = 16\cos^6A + 9\cos^2A -24\cos^4A - 9(1 - \cos^2A) - 16(1 - \cos^2A)^3 + 24(1 - \cos^2A)^2 = 16 cos 6 A + 9 cos 2 A − 24 cos 4 A − 9 ( 1 − cos 2 A ) − 16 ( 1 − cos 2 A ) 3 + 24 ( 1 − cos 2 A ) 2
= 32 cos 6 A − 48 cos 4 A + 18 cos 2 A − 1 = = 32\cos^6A - 48\cos^4A + 18\cos^2A - 1 = = 32 cos 6 A − 48 cos 4 A + 18 cos 2 A − 1 = R.H.S.
We have to prove that tan 3 A tan 2 A tan A = tan 3 A − tan 2 A − tan A \tan 3A\tan 2A\tan A = \tan 3A - \tan 2A - \tan A tan 3 A tan 2 A tan A = tan 3 A − tan 2 A − tan A
Rewriting this as following:
tan A + tan 2 A = tan 3 A ( 1 − tan A tan 2 A ) ⇒ tan A + tan 2 A 1 − tan A tan 2 A = tan 3 A \tan A + \tan 2A = \tan 3A(1 - \tan A\tan 2A)\Rightarrow \frac{\tan A + \tan 2A}{1 - \tan A\tan 2A} = \tan 3A tan A + tan 2 A = tan 3 A ( 1 − tan A tan 2 A ) ⇒ 1 − t a n A t a n 2 A t a n A + t a n 2 A = tan 3 A
⇒ tan ( A + 2 A ) = tan 3 A \Rightarrow \tan (A + 2A) = \tan 3A ⇒ tan ( A + 2 A ) = tan 3 A
Hence, proved.
We have to prove that 2 cos 2 n A + 1 2 cos A + 1 = ( 2 cos A − 1 ) ( 2 cos 2 A − 1 ) ( 2 cos 2 2 A − 1 ) … ( 2 cos 2 n − 1 − 1 ) \frac{2\cos2^nA + 1}{2\cos A + 1} = (2\cos A - 1)(2\cos 2A - 1)(2\cos2^2A - 1)\ldots(2\cos2^{n -
1} - 1) 2 c o s A + 1 2 c o s 2 n A + 1 = ( 2 cos A − 1 ) ( 2 cos 2 A − 1 ) ( 2 cos 2 2 A − 1 ) … ( 2 cos 2 n − 1 − 1 )
L.H.S. = 2 cos 2 n A + 1 2 cos A + 1 = \frac{2\cos2^nA + 1}{2\cos A + 1} = 2 c o s A + 1 2 c o s 2 n A + 1
Multiplying and dividing by 2 cos A − 1 2\cos A - 1 2 cos A − 1
= ( 2 cos A − 1 ) 2 cos 2 n A + 1 4 cos 2 A − 1 = ( 2 cos A − 1 ) 2 cos 2 n A + 1 2 cos 2 A + 1 = (2\cos A - 1)\frac{2\cos2^nA + 1}{4\cos^2A - 1} = (2\cos A - 1)\frac{2\cos2^nA + 1}{2\cos2A + 1} = ( 2 cos A − 1 ) 4 c o s 2 A − 1 2 c o s 2 n A + 1 = ( 2 cos A − 1 ) 2 c o s 2 A + 1 2 c o s 2 n A + 1
Multiplying and dividing by 2 cos 2 A − 1 2\cos2A - 1 2 cos 2 A − 1
= ( 2 cos A − 1 ) ( 2 cos 2 A − 1 ) 2 cos 2 n A + 1 4 cos 2 2 A − 1 = (2\cos A - 1)(2\cos2A - 1)\frac{2\cos2^nA + 1}{4\cos^22A - 1} = ( 2 cos A − 1 ) ( 2 cos 2 A − 1 ) 4 c o s 2 2 A − 1 2 c o s 2 n A + 1
= ( 2 cos A − 1 ) ( 2 cos 2 A − 1 ) 2 cos 2 n A + 1 2 cos 2 2 A + 1 = (2\cos A - 1)(2\cos2A - 1)\frac{2\cos2^nA + 1}{2\cos2^2A + 1} = ( 2 cos A − 1 ) ( 2 cos 2 A − 1 ) 2 c o s 2 2 A + 1 2 c o s 2 n A + 1
Proceeding similarly we obtain the R.H.S.
Given tan A = 1 7 , sin B = 1 10 \tan A= \frac{1}{7}, \sin B = \frac{1}{\sqrt{10}} tan A = 7 1 , sin B = 10 1
∴ cos B = 3 10 , tan B = 1 3 \therefore \cos B = \frac{3}{\sqrt{10}}, \tan B = \frac{1}{3} ∴ cos B = 10 3 , tan B = 3 1
tan ( A + 2 B ) = tan A + tan 2 B 1 − tan A tan 2 B \tan(A + 2B) = \frac{\tan A + \tan 2B}{1 - \tan A\tan 2B} tan ( A + 2 B ) = 1 − t a n A t a n 2 B t a n A + t a n 2 B
= tan A + 2 tan B 1 − tan 2 B 1 − tan A . 2 tan B 1 − tan 2 B = \frac{\tan A + \frac{2\tan B}{1 - \tan^2B}}{1 - \tan A.\frac{2\tan B}{1 - \tan^2B}} = 1 − t a n A . 1 − t a n 2 B 2 t a n B t a n A + 1 − t a n 2 B 2 t a n B
= 1 7 + 2 1 3 1 − 1 9 1 − 1 7 . 2 1 3 1 − 1 9 = \frac{\frac{1}{7} + \frac{2\frac{1}{3}}{1 - \frac{1}{9}}}{1 - \frac{1}{7}.\frac{2\frac{1}{3}}{1 - \frac{1}{9}}} = 1 − 7 1 . 1 − 9 1 2 3 1 7 1 + 1 − 9 1 2 3 1
= 1 ∴ A + 2 B = π 4 = 1 \therefore A + 2B = \frac{\pi}{4} = 1 ∴ A + 2 B = 4 π
We have to prove that tan ( π 4 + A ) + tan ( π 4 − A ) = 2 sec 2 A \tan\left(\frac{\pi}{4} + A\right) + \tan\left(\frac{\pi}{4} - A\right) = 2\sec2A tan ( 4 π + A ) + tan ( 4 π − A ) = 2 sec 2 A
L.H.S. = 1 + tan A 1 − tan A + 1 − tan A 1 + tan A = \frac{1 + \tan A}{1 - \tan A} + \frac{1 - \tan A}{1 + \tan A} = 1 − t a n A 1 + t a n A + 1 + t a n A 1 − t a n A
= ( 1 + tan A ) 2 + ( 1 − tan A ) 2 1 − tan 2 A = 2 + 2 tan 2 A 1 − tan 2 A = \frac{(1 + \tan A)^2 + (1 - \tan A)^2}{1 - \tan^2A} = \frac{2 + 2\tan^2A}{1 - \tan^2A} = 1 − t a n 2 A ( 1 + t a n A ) 2 + ( 1 − t a n A ) 2 = 1 − t a n 2 A 2 + 2 t a n 2 A
= 2 ( sin 2 A + cos 2 A ) cos 2 A − sin 2 A = 2 cos 2 A = 2 sec 2 A = = \frac{2(\sin^2A + \cos^2A)}{\cos^2A - \sin^2A} = \frac{2}{\cos 2A} = 2\sec 2A = = c o s 2 A − s i n 2 A 2 ( s i n 2 A + c o s 2 A ) = c o s 2 A 2 = 2 sec 2 A = R.H.S.
We have to prove that 3 cosec 2 0 ∘ − sec 2 0 ∘ = 4 \sqrt{3}\cosec 20^\circ - \sec 20^\circ = 4 3 cosec 2 0 ∘ − sec 2 0 ∘ = 4
L.H.S. = 3 sin 2 0 ∘ − 1 cos 2 0 ∘ = \frac{\sqrt{3}}{\sin20^\circ} - \frac{1}{\cos20^\circ} = s i n 2 0 ∘ 3 − c o s 2 0 ∘ 1
= 4 ( 3 2 ) cos 2 0 ∘ − 1 2 sin 2 0 ∘ 2 sin 2 0 ∘ cos 2 0 ∘ = \frac{4(\frac{\sqrt{3}}{2})\cos20^\circ - \frac{1}{2}\sin20^\circ}{2\sin20^\circ\cos^20\circ} = 2 s i n 2 0 ∘ c o s 2 0 ∘ 4 ( 2 3 ) c o s 2 0 ∘ − 2 1 s i n 2 0 ∘
= 4 ( sin ( 5 0 ∘ − 2 0 ∘ ) ) sin 4 0 ∘ = 4 = = \frac{4(\sin(50^\circ - 20^\circ))}{\sin40^\circ} = 4 = = s i n 4 0 ∘ 4 ( s i n ( 5 0 ∘ − 2 0 ∘ )) = 4 = R.H.S.
We have to prove that tan A + 2 tan 2 A + 4 tan 4 A + 8 cot 8 A = cot A \tan A + 2\tan 2A + 4\tan 4A + 8\cot 8A = \cot A tan A + 2 tan 2 A + 4 tan 4 A + 8 cot 8 A = cot A
tan A − cot A = sin 2 A − cos 2 A sin A cos A = − 2 cos 2 A sin 2 A = − 2 cot 2 A \tan A - \cot A = \frac{\sin^2A - \cos^2A}{\sin A\cos A} = -\frac{2\cos 2A}{\sin 2A} = -2\cot 2A tan A − cot A = s i n A c o s A s i n 2 A − c o s 2 A = − s i n 2 A 2 c o s 2 A = − 2 cot 2 A
Similarly, 2 tan 2 A − 2 cot 2 A = − 4 cot 4 A 2\tan 2A - 2\cot 2A = -4\cot 4A 2 tan 2 A − 2 cot 2 A = − 4 cot 4 A
and 4 tan 4 A − 4 cot 4 A = − 8 cot 8 A 4\tan 4A - 4\cot 4A = -8\cot 8A 4 tan 4 A − 4 cot 4 A = − 8 cot 8 A
Thus, tan A + 2 tan 2 A + 4 tan 4 A + 8 cot 8 A = cot A \tan A + 2\tan 2A + 4\tan 4A + 8\cot 8A = \cot A tan A + 2 tan 2 A + 4 tan 4 A + 8 cot 8 A = cot A
We have to prove that cos 2 A + cos 2 ( 2 π 3 − A ) + cos 2 ( 2 π 3 + A ) = 3 2 \cos^2A + \cos^2\left(\frac{2\pi}{3} - A\right) + \cos^2\left(\frac{2\pi}{3} + A\right) =
\frac{3}{2} cos 2 A + cos 2 ( 3 2 π − A ) + cos 2 ( 3 2 π + A ) = 2 3
⇒ 2 cos 2 A + 2 cos 2 ( 2 π 3 − A ) + 2 cos 2 ( 2 π 3 + A ) = 3 \Rightarrow 2\cos^2A + 2\cos^2\left(\frac{2\pi}{3} - A\right) + 2\cos^2\left(\frac{2\pi}{3} + A\right) = 3 ⇒ 2 cos 2 A + 2 cos 2 ( 3 2 π − A ) + 2 cos 2 ( 3 2 π + A ) = 3
L.H.S. = cos 2 A + 1 + cos ( 4 π 3 − 2 A ) + 1 + cos ( 4 π 3 + 2 A ) + 1 = \cos 2A + 1 + \cos\left(\frac{4\pi}{3} - 2A\right) + 1 + \cos\left(\frac{4\pi}{3} + 2A\right) + 1 = cos 2 A + 1 + cos ( 3 4 π − 2 A ) + 1 + cos ( 3 4 π + 2 A ) + 1
= 3 + cos 2 A + 2 cos ( 4 π 3 ) cos 2 A = 3 = = 3 + \cos2A + 2\cos\left(\frac{4\pi}{3}\right)\cos2A = 3 = = 3 + cos 2 A + 2 cos ( 3 4 π ) cos 2 A = 3 = R.H.S.
2 sin 2 A + 4 cos ( A + B ) sin A sin B + cos 2 ( A + B ) 2\sin^2A + 4\cos (A + B)\sin A\sin B + \cos2(A + B) 2 sin 2 A + 4 cos ( A + B ) sin A sin B + cos 2 ( A + B )
= 2 sin 2 A + 2 cos ( A + B ) 2 sin A sin B + cos 2 ( A + B ) = 2\sin^2A + 2\cos(A + B)2\sin A\sin B + \cos2(A + B) = 2 sin 2 A + 2 cos ( A + B ) 2 sin A sin B + cos 2 ( A + B )
= 2 sin 2 A + 2 cos ( A + B ) [ cos ( A − B ) − cos ( A + B ) ] + cos 2 ( A + B ) = 2\sin^2A + 2\cos(A + B)[\cos(A - B) - \cos(A + B)] + \cos2(A + B) = 2 sin 2 A + 2 cos ( A + B ) [ cos ( A − B ) − cos ( A + B )] + cos 2 ( A + B )
= 2 sin 2 A + 2 cos ( A + B ) cos ( A − B ) − 2 cos 2 ( A + B ) + cos 2 ( A + B ) = 2\sin^2A + 2\cos(A + B)\cos(A - B) - 2\cos^2(A + B) + \cos2(A + B) = 2 sin 2 A + 2 cos ( A + B ) cos ( A − B ) − 2 cos 2 ( A + B ) + cos 2 ( A + B )
= 2 sin 2 A + 2 ( cos 2 A − sin 2 B ) − 2 cos 2 ( A + B ) + 2 cos 2 ( A + B ) − 1 = 2\sin^2A + 2(\cos^2A - \sin^2B) - 2\cos^2(A + B) + 2\cos^2(A + B) - 1 = 2 sin 2 A + 2 ( cos 2 A − sin 2 B ) − 2 cos 2 ( A + B ) + 2 cos 2 ( A + B ) − 1
= 2 ( sin 2 A + cos 2 A ) − 2 sin 2 B − 1 = 1 − 2 sin 2 B = 2(\sin^2A + \cos^2A) -2\sin^2B - 1 = 1 -2\sin^2B = 2 ( sin 2 A + cos 2 A ) − 2 sin 2 B − 1 = 1 − 2 sin 2 B which is independent of A A A
Given, cos A = 1 2 ( a + 1 a ) \cos A = \frac{1}{2}\left(a + \frac{1}{a}\right) cos A = 2 1 ( a + a 1 )
cos 2 A = 2 cos 2 A − 1 = 2. 1 4 ( a + 1 a ) 2 − 1 \cos 2A = 2\cos^2A - 1 = 2.\frac{1}{4}\left(a + \frac{1}{a}\right)^2 - 1 cos 2 A = 2 cos 2 A − 1 = 2. 4 1 ( a + a 1 ) 2 − 1
= 1 2 ( a 2 + 1 a 2 ) = \frac{1}{2}\left(a^2 + \frac{1}{a^2}\right) = 2 1 ( a 2 + a 2 1 )
We have to prove that cos 2 A + sin 2 A cos 2 B = cos 2 B + sin 2 B cos 2 A \cos^2A + \sin^2A\cos 2B = \cos^2B + \sin^2B\cos 2A cos 2 A + sin 2 A cos 2 B = cos 2 B + sin 2 B cos 2 A
⇒ cos 2 A − cos 2 B = sin 2 B cos 2 A − sin 2 A cos 2 B \Rightarrow \cos^2A - \cos^2B = \sin^2B\cos2A - \sin^2A\cos2B ⇒ cos 2 A − cos 2 B = sin 2 B cos 2 A − sin 2 A cos 2 B
R.H.S. = sin 2 B cos 2 A − sin 2 A cos 2 B = \sin^2B\cos2A - \sin^2A\cos2B = sin 2 B cos 2 A − sin 2 A cos 2 B
= sin 2 B ( cos 2 A − sin 2 A ) − sin 2 A ( cos 2 B − sin 2 B ) = \sin^2B(\cos^2A - \sin^2A) - \sin^2A(\cos^2B - \sin^2B) = sin 2 B ( cos 2 A − sin 2 A ) − sin 2 A ( cos 2 B − sin 2 B )
= cos 2 A sin 2 B − sin 2 A cos 2 B = cos 2 A ( 1 − cos 2 B ) − ( 1 − cos 2 A ) cos 2 B = \cos^2A\sin^2B - \sin^2A\cos^2B = \cos^2A(1 - \cos^2B) - (1 - \cos^2A)\cos^2B = cos 2 A sin 2 B − sin 2 A cos 2 B = cos 2 A ( 1 − cos 2 B ) − ( 1 − cos 2 A ) cos 2 B
= cos 2 A − cos 2 B = = \cos^2A - \cos^2B = = cos 2 A − cos 2 B = R.H.S.
We have to prove that 1 + tan A tan 2 A = sec 2 A 1 + \tan A\tan 2A = \sec 2A 1 + tan A tan 2 A = sec 2 A
L.H.S. = 1 + tan A tan 2 A = 1 + tan A . 2 tan A 1 − tan 2 A = 1 + \tan A\tan 2A = 1 + \tan A.\frac{2\tan A}{1 - \tan^2A} = 1 + tan A tan 2 A = 1 + tan A . 1 − t a n 2 A 2 t a n A
= 1 + tan 2 A 1 − tan 2 A = cos 2 A + sin 2 A cos 2 A − sin 2 A = \frac{1 + \tan^2A}{1 - \tan^2A} = \frac{\cos^2A + \sin^2A}{\cos^2A - \sin^2A} = 1 − t a n 2 A 1 + t a n 2 A = c o s 2 A − s i n 2 A c o s 2 A + s i n 2 A
= 1 cos 2 A = sec 2 A = = \frac{1}{\cos 2A} = \sec 2A = = c o s 2 A 1 = sec 2 A = R.H.S.
We have to prove that 1 + sin 2 A 1 − sin 2 A = ( 1 + tan A 1 − tan A ) 2 \frac{1 + \sin 2A}{1 - \sin 2A} = \left(\frac{1 + \tan A}{1 - \tan A}\right)^2 1 − s i n 2 A 1 + s i n 2 A = ( 1 − t a n A 1 + t a n A ) 2
L.H.S. = 1 + sin 2 A 1 − sin 2 A = sin 2 A + cos 2 A + 2 sin A cos A sin 2 A + cos 2 A − 2 sin A cos A = \frac{1 + \sin 2A}{1 - \sin 2A} = \frac{\sin^2A + \cos^2A + 2\sin A\cos A}{\sin^2A + \cos^2A - 2\sin A\cos A} = 1 − s i n 2 A 1 + s i n 2 A = s i n 2 A + c o s 2 A − 2 s i n A c o s A s i n 2 A + c o s 2 A + 2 s i n A c o s A
= ( sin A + cos A sin A − cos A ) 2 = \left(\frac{\sin A + \cos A}{\sin A - \cos A}\right)^2 = ( s i n A − c o s A s i n A + c o s A ) 2
Dividing numerator and denominator by cos 2 A , \cos^2A, cos 2 A , we get
= ( 1 + tan A 1 − tan A ) 2 = = \left(\frac{1 + \tan A}{1 - \tan A}\right)^2 = = ( 1 − t a n A 1 + t a n A ) 2 = R.H.S.
We have to prove that 1 sin 1 0 ∘ − 3 cos 1 0 ∘ = 4 \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} = 4 s i n 1 0 ∘ 1 − c o s 1 0 ∘ 3 = 4
L.H.S. = 1 sin 1 0 ∘ − 3 cos 1 0 ∘ = \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} = s i n 1 0 ∘ 1 − c o s 1 0 ∘ 3
= cos 1 0 ∘ − 3 sin 1 0 ∘ sin 1 0 ∘ cos 1 0 ∘ = \frac{\cos10^\circ - \sqrt{3}\sin10^\circ}{\sin10^\circ\cos10^\circ} = s i n 1 0 ∘ c o s 1 0 ∘ c o s 1 0 ∘ − 3 s i n 1 0 ∘
= 2.2 ( 1 2 cos 1 0 ∘ − 3 2 sin 1 0 ∘ ) 2 sin 1 0 ∘ cos 1 0 ∘ = \frac{2.2\left(\frac{1}{2}\cos10^\circ - \frac{\sqrt{3}}{2}\sin10^\circ\right)}{2\sin10^\circ\cos10^\circ} = 2 s i n 1 0 ∘ c o s 1 0 ∘ 2.2 ( 2 1 c o s 1 0 ∘ − 2 3 s i n 1 0 ∘ )
= 4. sin 3 0 ∘ cos 1 0 ∘ − cos 3 0 ∘ sin 1 0 ∘ sin 2 0 ∘ = 4. sin ( 3 0 ∘ − 1 0 ∘ ) sin 2 0 ∘ = 4.\frac{\sin30^\circ\cos10^\circ - \cos30^\circ\sin10^\circ}{\sin20^\circ} = 4.\frac{\sin(30^\circ -
10^\circ)}{\sin20^\circ} = 4. s i n 2 0 ∘ s i n 3 0 ∘ c o s 1 0 ∘ − c o s 3 0 ∘ s i n 1 0 ∘ = 4. s i n 2 0 ∘ s i n ( 3 0 ∘ − 1 0 ∘ )
= 4 = = 4 = = 4 = R.H.S.
We have to prove that cot 2 A − tan 2 A = 4 cot 2 A cosec 2 A \cot^2A - \tan^2A = 4\cot2A\cosec 2A cot 2 A − tan 2 A = 4 cot 2 A cosec 2 A
L.H.S. = cos 2 A sin 2 A − sin 2 A cos 2 A = \frac{\cos^2A}{\sin^2A} - \frac{\sin^2A}{\cos^2A} = s i n 2 A c o s 2 A − c o s 2 A s i n 2 A
= cos 4 A − sin 4 A sin 2 A cos 2 A = 4 ( cos 2 A + sin 2 A ) ( cos 2 A − sin 2 A A ) ( 2 sin A cos A ) 2 = \frac{\cos^4A - \sin^4A}{\sin^2A\cos^2A} = \frac{4(\cos^2A + \sin^2A)(\cos^2A - \sin^2AA)}{(2\sin A\cos A)^2} = s i n 2 A c o s 2 A c o s 4 A − s i n 4 A = ( 2 s i n A c o s A ) 2 4 ( c o s 2 A + s i n 2 A ) ( c o s 2 A − s i n 2 AA )
= 4 cos 2 A sin 2 2 A = 4 cot 2 A cosec 2 A = = \frac{4\cos 2A}{\sin^22A} = 4\cot 2A\cosec 2A = = s i n 2 2 A 4 c o s 2 A = 4 cot 2 A cosec 2 A = R.H.S.
We have to prove that 1 + sin 2 A cos 2 A = cos A + sin A cos A − sin A = tan ( π 4 + A ) \frac{1 +\sin 2A}{\cos2A} = \frac{\cos A + \sin A}{\cos A - \sin A} = \tan\left(\frac{\pi}{4} +
A\right) c o s 2 A 1 + s i n 2 A = c o s A − s i n A c o s A + s i n A = tan ( 4 π + A )
L.H.S. = 1 + sin 2 A cos 2 A = sin 2 A + cos 2 A + 2 sin A cos A cos 2 A − sin 2 A = \frac{1 +\sin 2A}{\cos2A} = \frac{\sin^2A + \cos^2A + 2\sin A\cos A}{\cos^2A - \sin^2A} = c o s 2 A 1 + s i n 2 A = c o s 2 A − s i n 2 A s i n 2 A + c o s 2 A + 2 s i n A c o s A
= ( cos A + sin A ) 2 cos 2 A − sin 2 A = cos A + sin A cos A − sin A = = \frac{(\cos A + \sin A)^2}{\cos^2A - \sin^2A} = \frac{\cos A + \sin A}{\cos A - \sin A} = = c o s 2 A − s i n 2 A ( c o s A + s i n A ) 2 = c o s A − s i n A c o s A + s i n A = middle term
Dividing both numerator and denominator by cos A , \cos A, cos A , we get
= 1 + tan A 1 − tan A = tan π 4 + tan A 1 − tan π 4 . tan A = \frac{1 + \tan A}{1 - \tan A} = \frac{\tan\frac{\pi}{4} + \tan A}{1 - \tan\frac{\pi}{4}.\tan A} = 1 − t a n A 1 + t a n A = 1 − t a n 4 π . t a n A t a n 4 π + t a n A
= tan ( π 4 + A ) = = \tan\left(\frac{\pi}{4} + A\right) = = tan ( 4 π + A ) = R.H.S.
We have to prove that cos 6 A − sin 6 A = cos 2 A ( 1 − 1 4 sin 2 2 A ) \cos^6A - \sin^6A = \cos2A\left(1 - \frac{1}{4}\sin^22A\right) cos 6 A − sin 6 A = cos 2 A ( 1 − 4 1 sin 2 2 A )
R.H.S. = cos 2 A ( 1 − 1 4 sin 2 2 A ) = ( cos 2 A − sin 2 A ) ( 1 − sin 2 A cos 2 A ) = \cos2A\left(1 - \frac{1}{4}\sin^22A\right) = (\cos^2A - \sin^2A)(1 - \sin^2A\cos^2A) = cos 2 A ( 1 − 4 1 sin 2 2 A ) = ( cos 2 A − sin 2 A ) ( 1 − sin 2 A cos 2 A )
= ( cos 2 A − sin 2 A ) [ ( cos 2 A + sin 2 A ) 2 − sin 2 A cos 2 A ] = cos 6 A − sin 6 A = = (\cos^2A - \sin^2A)[(\cos^2A + \sin^2A)^2 - \sin^2A\cos^2A] = \cos^6A - \sin^6A = = ( cos 2 A − sin 2 A ) [( cos 2 A + sin 2 A ) 2 − sin 2 A cos 2 A ] = cos 6 A − sin 6 A = L.H.S.
This problem is similar to 44 and can be solved similarly.
We have to prove that ( 1 + sec 2 A ) ( 1 + sec 2 2 A ) ( 1 + s e c 2 3 A ) … ( 1 + sec 2 n A ) = tan 2 n A tan A (1 + \sec2A)(1+ \sec2^2A)(1 + sec2^3A) \ldots (1 + \sec2^nA) = \frac{\tan2^nA}{\tan A} ( 1 + sec 2 A ) ( 1 + sec 2 2 A ) ( 1 + sec 2 3 A ) … ( 1 + sec 2 n A ) = t a n A t a n 2 n A
L.H.S. = ( 1 + sec 2 A ) ( 1 + sec 2 2 A ) ( 1 + sec 2 3 A ) … ( 1 + sec 2 n A ) = (1 + \sec2A)(1 + \sec2^2A)(1 + \sec2^3A) \ldots (1 + \sec2^nA) = ( 1 + sec 2 A ) ( 1 + sec 2 2 A ) ( 1 + sec 2 3 A ) … ( 1 + sec 2 n A )
= tan A tan A ( 1 + sec 2 A ) ( 1 + sec 2 2 A ) ( 1 + sec 2 3 A ) … ( 1 + sec 2 n A ) = \frac{\tan A}{\tan A}(1 + \sec2A)(1 + \sec2^2A)(1 + \sec2^3A) \ldots (1 + \sec2^nA) = t a n A t a n A ( 1 + sec 2 A ) ( 1 + sec 2 2 A ) ( 1 + sec 2 3 A ) … ( 1 + sec 2 n A )
Now tan A ( 1 + sec 2 A ) = tan A 1 + cos 2 A cos 2 A \tan A(1 + \sec 2A) = \tan A\frac{1 + \cos 2A}{\cos 2A} tan A ( 1 + sec 2 A ) = tan A c o s 2 A 1 + c o s 2 A
= tan A 1 + 1 − tan 2 A 1 + tan 2 A 1 − tan 2 A 1 + tan 2 A = \tan A\frac{1 + \frac{1 - \tan^2A}{1 + \tan^2A}}{\frac{1 - \tan^2A}{1 + \tan^2A}} = tan A 1 + t a n 2 A 1 − t a n 2 A 1 + 1 + t a n 2 A 1 − t a n 2 A
= tan A 2 1 − tan 2 A = 2 tan A 1 − tan 2 A = tan 2 A = \tan A\frac{2}{1 - \tan^2A} = \frac{2\tan A}{1 - \tan^2A} = \tan 2A = tan A 1 − t a n 2 A 2 = 1 − t a n 2 A 2 t a n A = tan 2 A
Similarly, tan 2 A ( 1 + sec 2 2 A ) = tan 2 2 A \tan 2A(1 + \sec2^2A) = \tan2^2A tan 2 A ( 1 + sec 2 2 A ) = tan 2 2 A
Proceeding similalry we obtain R.H.S.
We have to prove that sin 2 n A sin A = 2 n cos A cos 2 A cos 2 2 A … cos 2 n − 1 A \frac{\sin2^nA}{\sin A} = 2^n\cos A\cos 2A\cos 2^2A\ldots\cos2^{n - 1}A s i n A s i n 2 n A = 2 n cos A cos 2 A cos 2 2 A … cos 2 n − 1 A
Dividing and multiplying with 2 cos A 2\cos A 2 cos A
L.H.S. = sin 2 n A sin A = 2 cos A . sin 2 n A 2 sin A cos A = 2 cos A . sin 2 n A sin 2 A = \frac{\sin2^nA}{\sin A} = 2\cos A.\frac{\sin2^nA}{2\sin A\cos A} = 2\cos A.\frac{\sin2^nA}{\sin 2A} = s i n A s i n 2 n A = 2 cos A . 2 s i n A c o s A s i n 2 n A = 2 cos A . s i n 2 A s i n 2 n A
Again, dividing and multiplying with 2 cos 2 A 2\cos 2A 2 cos 2 A
= 2 2 cos A cos 2 A . sin 2 n A 2 sin 2 A cos 2 A = 2 2 cos A cos 2 A . sin 2 n A sin 2 2 A = 2^2\cos A\cos 2A.\frac{\sin2^n A}{2\sin 2A\cos 2A} = 2^2\cos A\cos 2A.\frac{\sin2^n A}{\sin 2^2A} = 2 2 cos A cos 2 A . 2 s i n 2 A c o s 2 A s i n 2 n A = 2 2 cos A cos 2 A . s i n 2 2 A s i n 2 n A
Proceeding similarly, we find the R.H.S.
We have to prove that 3 ( sin A − cos A ) 4 + 6 ( sin A + cos A ) 2 + 4 ( sin 6 A + cos 6 A ) = 13 3(\sin A - \cos A)^4 + 6(\sin A + \cos A)^2 + 4(\sin^6A + \cos^6A) = 13 3 ( sin A − cos A ) 4 + 6 ( sin A + cos A ) 2 + 4 ( sin 6 A + cos 6 A ) = 13
3 ( sin A − cos A ) 4 = 3 [ ( sin A − cos A ) 2 ] 2 = 3 ( 1 − sin 2 A ) 2 3(\sin A - \cos A)^4 = 3[(\sin A - \cos A)^2]^2 = 3(1 - \sin 2A)^2 3 ( sin A − cos A ) 4 = 3 [( sin A − cos A ) 2 ] 2 = 3 ( 1 − sin 2 A ) 2
6 ( sin A + cos A ) 2 = 6 ( 1 + sin 2 A ) 6(\sin A + \cos A)^2 = 6(1 + \sin2A) 6 ( sin A + cos A ) 2 = 6 ( 1 + sin 2 A )
4 ( sin 6 A + cos 6 A ) = 4 [ ( cos 2 A + sin 2 A ) 3 − 3 cos 2 A sin 2 A ( cos 2 A + sin 2 A ) ] = 4 ( 1 − 3 4 sin 2 2 A ) 4(\sin^6A + \cos^6A) = 4[(\cos^2A + \sin^2A)^3 - 3\cos^2A\sin^2A(\cos^2A + \sin^2A)] = 4(1 - \frac{3}{4}\sin^22A) 4 ( sin 6 A + cos 6 A ) = 4 [( cos 2 A + sin 2 A ) 3 − 3 cos 2 A sin 2 A ( cos 2 A + sin 2 A )] = 4 ( 1 − 4 3 sin 2 2 A )
Adding all these yields 13. 13. 13.
We have to prove that 2 ( sin 6 A + cos 6 A ) − 3 ( sin 4 A + cos 4 A ) + 1 = 0 2(\sin^6A + \cos^6A) - 3(\sin^4A + \cos^4A) + 1 = 0 2 ( sin 6 A + cos 6 A ) − 3 ( sin 4 A + cos 4 A ) + 1 = 0
L.H.S. = 2 [ ( sin 2 A + cos 2 A ) 3 − 3 sin 2 A cos 2 A ( sin 2 A + cos 2 A ) ] − 3 [ ( sin 2 A + cos 2 A ) 2 − 2 sin 2 A cos 2 A ] + 1 = 2[(\sin^2A + \cos^2A)^3 - 3\sin^2A\cos^2A(\sin^2A + \cos^2A)] -3[(\sin^2A + \cos^2A)^2 - 2\sin^2A\cos^2A] + 1 = 2 [( sin 2 A + cos 2 A ) 3 − 3 sin 2 A cos 2 A ( sin 2 A + cos 2 A )] − 3 [( sin 2 A + cos 2 A ) 2 − 2 sin 2 A cos 2 A ] + 1
= 2 ( 1 − 3 sin 2 A cos 2 A ) − 3 [ 1 − 2 sin 2 A cos 2 A ] + 1 = 0 = = 2(1 - 3\sin^2A\cos^2A) - 3[1 - 2\sin^2A\cos^2A] + 1 = 0 = = 2 ( 1 − 3 sin 2 A cos 2 A ) − 3 [ 1 − 2 sin 2 A cos 2 A ] + 1 = 0 = R.H.S.
Given cos 2 A + cos 2 ( A + B ) − 2 cos A cos B cos ( A + B ) \cos^2A + \cos^2(A + B) -2\cos A\cos B\cos(A + B) cos 2 A + cos 2 ( A + B ) − 2 cos A cos B cos ( A + B )
= cos 2 A + cos 2 ( A + B ) − 2 cos A cos B cos ( A + B ) + cos 2 A cos 2 B − cos 2 A cos 2 B = \cos^2A + \cos^2(A + B) -2\cos A\cos B\cos(A + B) + \cos^2A\cos^2B - \cos^2A\cos^2B = cos 2 A + cos 2 ( A + B ) − 2 cos A cos B cos ( A + B ) + cos 2 A cos 2 B − cos 2 A cos 2 B
= cos 2 A + [ cos ( A + B ) − cos A cos B ] 2 − cos 2 A cos 2 B = \cos^2A + [\cos(A + B) - \cos A\cos B]^2 - \cos^2A\cos^2B = cos 2 A + [ cos ( A + B ) − cos A cos B ] 2 − cos 2 A cos 2 B
= cos 2 A + sin 2 A sin 2 B − cos 2 A cos 2 B = \cos^2A + \sin^2A\sin^2B - \cos^2A\cos^2B = cos 2 A + sin 2 A sin 2 B − cos 2 A cos 2 B
= cos 2 A + ( 1 − cos 2 A ) ( 1 − cos 2 B ) − cos 2 A cos 2 B = \cos^2A + (1 - \cos^2A)(1 - \cos^2B) - \cos^2A\cos^2B = cos 2 A + ( 1 − cos 2 A ) ( 1 − cos 2 B ) − cos 2 A cos 2 B
= 1 − cos 2 B = 1 - \cos^2B = 1 − cos 2 B which is independent of A A A
We have to prove that cos 3 A cos 3 A + sin 3 A sin 3 A = cos 3 2 A \cos^3A\cos 3A + \sin^3A\sin 3A = \cos^32A cos 3 A cos 3 A + sin 3 A sin 3 A = cos 3 2 A
We know that cos 3 A = 1 4 ( 3 cos A + cos 3 A ) \cos^3A = \frac{1}{4}(3\cos A + \cos 3A) cos 3 A = 4 1 ( 3 cos A + cos 3 A ) and
sin 3 A = 1 4 ( 3 sin A − sin 3 A ) \sin^3A = \frac{1}{4}(3\sin A - \sin 3A) sin 3 A = 4 1 ( 3 sin A − sin 3 A )
L.H.S. = 1 4 ( 3 cos A + cos 3 A ) cos 3 A + 1 4 ( 3 sin A − sin 3 A ) sin 3 A = \frac{1}{4}(3\cos A + \cos 3A)\cos 3A + \frac{1}{4}(3\sin A - \sin 3A)\sin 3A = 4 1 ( 3 cos A + cos 3 A ) cos 3 A + 4 1 ( 3 sin A − sin 3 A ) sin 3 A
= 3 4 ( cos 3 A cos A + sin 3 A sin A ) + 1 4 ( cos 2 3 A − sin 2 3 A ) = \frac{3}{4}(\cos3A\cos A + \sin 3A\sin A) + \frac{1}{4}(\cos^23A - \sin^23A) = 4 3 ( cos 3 A cos A + sin 3 A sin A ) + 4 1 ( cos 2 3 A − sin 2 3 A )
= 3 4 cos 2 A + 1 4 cos 6 A = \frac{3}{4}\cos 2A + \frac{1}{4}\cos6A = 4 3 cos 2 A + 4 1 cos 6 A
= 3 4 cos 2 A + 1 4 ( 4 cos 3 2 A − 3 cos 2 A ) = \frac{3}{4}\cos 2A + \frac{1}{4}(4\cos^32A - 3\cos 2A) = 4 3 cos 2 A + 4 1 ( 4 cos 3 2 A − 3 cos 2 A )
= cos 3 2 A = = \cos^32A = = cos 3 2 A = R.H.S.
We have to prove that tan A tan ( 6 0 ∘ − A ) tan ( 6 0 ∘ + A ) = tan 3 A \tan A\tan(60^\circ - A)\tan(60^\circ + A) = \tan 3A tan A tan ( 6 0 ∘ − A ) tan ( 6 0 ∘ + A ) = tan 3 A
L.H.S. = sin A . sin ( 6 0 ∘ − A ) . sin ( 6 0 ∘ + A ) cos A . cos ( 6 0 ∘ − A ) . cos ( 6 0 ∘ + A ) = \frac{\sin A.\sin(60^\circ - A).\sin(60^\circ + A)}{\cos A.\cos(60^\circ - A).\cos(60^\circ + A)} = c o s A . c o s ( 6 0 ∘ − A ) . c o s ( 6 0 ∘ + A ) s i n A . s i n ( 6 0 ∘ − A ) . s i n ( 6 0 ∘ + A )
= sin A ( sin 2 6 0 ∘ − sin 2 A ) cos A ( cos 2 6 0 ∘ − sin 2 A ) [ ∵ sin ( A + B ) sin ( A − B ) = sin 2 A − sin 2 B and cos ( A + B ) cos ( A − B ) = cos 2 A − sin 2 B ] = \frac{\sin A(\sin^260^\circ - \sin^2A)}{\cos A(\cos^260^\circ - \sin^2A)}[\because \sin(A + B)\sin (A - B) = \sin^2A -
\sin^2B\text{~and~}\cos(A + B)\cos(A - B) = \cos^2A - \sin^2B] = c o s A ( c o s 2 6 0 ∘ − s i n 2 A ) s i n A ( s i n 2 6 0 ∘ − s i n 2 A ) [ ∵ sin ( A + B ) sin ( A − B ) = sin 2 A − sin 2 B and cos ( A + B ) cos ( A − B ) = cos 2 A − sin 2 B ]
= sin A ( 3 − 4 sin 2 A ) cos A ( 1 − 4 sin 2 A ) = 3 sin A − 4 sin 3 A 4 cos 3 A − 3 cos A = \frac{\sin A(3 - 4\sin^2A)}{\cos A(1 - 4\sin^2A)} = \frac{3\sin A - 4\sin^3A}{4\cos^3A - 3\cos A} = c o s A ( 1 − 4 s i n 2 A ) s i n A ( 3 − 4 s i n 2 A ) = 4 c o s 3 A − 3 c o s A 3 s i n A − 4 s i n 3 A
= sin 3 A cos 3 A = tan 3 A = = \frac{\sin 3A}{\cos 3A} = \tan 3A = = c o s 3 A s i n 3 A = tan 3 A = R.H.S.
We have to prove that sin 2 A + sin 3 ( 2 π 3 + A ) + sin 3 ( 4 π 3 + A ) = − 3 4 sin 3 A \sin^2A + \sin^3\left(\frac{2\pi}{3} + A\right) + \sin^3\left(\frac{4\pi}{3} + A\right) =
-\frac{3}{4}\sin 3A sin 2 A + sin 3 ( 3 2 π + A ) + sin 3 ( 3 4 π + A ) = − 4 3 sin 3 A
∵ sin 3 A = 1 4 [ 3 sin A − sin 3 A ] \because \sin^3A = \frac{1}{4}[3\sin A - \sin 3A] ∵ sin 3 A = 4 1 [ 3 sin A − sin 3 A ]
L.H.S. = 1 4 [ 3 sin A − sin 3 A ] + 1 4 [ 3 sin ( 2 π 3 + A ) − sin ( 2 π + 3 A ) ] + 1 4 [ 3 sin ( 4 π 3 + A ) − sin ( 4 π + 3 A ) ] = \frac{1}{4}[3\sin A - \sin 3A] + \frac{1}{4}\left[3\sin\left(\frac{2\pi}{3} + A\right) - \sin(2\pi + 3A)\right]
+ \frac{1}{4}\left[3\sin\left(\frac{4\pi}{3} + A\right) - \sin(4\pi + 3A)\right] = 4 1 [ 3 sin A − sin 3 A ] + 4 1 [ 3 sin ( 3 2 π + A ) − sin ( 2 π + 3 A ) ] + 4 1 [ 3 sin ( 3 4 π + A ) − sin ( 4 π + 3 A ) ]
= 1 4 [ 3 sin A − sin 3 A ] + 1 4 [ 3 sin ( 2 π 3 + A ) − sin 3 A ] + 1 4 [ 3 sin ( 4 π 3 + A ) − sin 3 A ] = \frac{1}{4}[3\sin A - \sin 3A] + \frac{1}{4}\left[3\sin\left(\frac{2\pi}{3} + A\right) - \sin3A\right]
+ \frac{1}{4}\left[3\sin\left(\frac{4\pi}{3} + A\right) - \sin3A\right] = 4 1 [ 3 sin A − sin 3 A ] + 4 1 [ 3 sin ( 3 2 π + A ) − sin 3 A ] + 4 1 [ 3 sin ( 3 4 π + A ) − sin 3 A ]
= 3 4 [ sin A − sin 3 A + sin ( 2 π 3 + A ) + sin ( 4 π 3 + A ) ] = \frac{3}{4}\left[\sin A - \sin 3A + \sin\left(\frac{2\pi}{3} + A\right) + \sin\left(\frac{4\pi}{3} + A\right)\right] = 4 3 [ sin A − sin 3 A + sin ( 3 2 π + A ) + sin ( 3 4 π + A ) ]
= 3 4 [ sin A − sin 3 A + 2. ( − sin A ) . 1 2 ] = \frac{3}{4}[\sin A - \sin 3A + 2.(-\sin A).\frac{1}{2}] = 4 3 [ sin A − sin 3 A + 2. ( − sin A ) . 2 1 ]
= − 3 4 sin 3 A = = -\frac{3}{4}\sin 3A = = − 4 3 sin 3 A = R.H.S.
We have to prove that 4 ( cos 3 1 0 ∘ + sin 3 2 0 ∘ ) = 3 ( cos 10 ∘ + sin 2 0 ∘ ) 4(\cos^310^\circ + \sin^320^\circ) = 3(\cos 10\circ + \sin 20^\circ) 4 ( cos 3 1 0 ∘ + sin 3 2 0 ∘ ) = 3 ( cos 10 ∘ + sin 2 0 ∘ )
⇒ 4 cos 3 1 0 ∘ − 3 cos 1 0 ∘ = 3 sin 2 0 ∘ − 4 sin 3 2 0 ∘ \Rightarrow 4\cos^310^\circ - 3\cos10^\circ = 3\sin20^\circ - 4\sin^320^\circ ⇒ 4 cos 3 1 0 ∘ − 3 cos 1 0 ∘ = 3 sin 2 0 ∘ − 4 sin 3 2 0 ∘
⇒ cos 3.1 0 ∘ = sin 3.2 0 ∘ \Rightarrow \cos 3.10^\circ = \sin 3.20^\circ ⇒ cos 3.1 0 ∘ = sin 3.2 0 ∘
⇒ cos 3 0 ∘ = sin 6 0 ∘ ⇒ 3 2 = 3 2 \Rightarrow \cos 30^\circ = \sin 60^\circ \Rightarrow \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} ⇒ cos 3 0 ∘ = sin 6 0 ∘ ⇒ 2 3 = 2 3
Hence, proved.
We have to prove that sin A cos 3 A − cos A sin 3 A = 1 4 sin 4 A \sin A\cos^3A - \cos A\sin^3A = \frac{1}{4}\sin 4A sin A cos 3 A − cos A sin 3 A = 4 1 sin 4 A
L.H.S. = 1 2 2 sin A cos A ( cos 2 A − sin 2 A ) = 1 2 sin 2 A cos 2 A = \frac{1}{2}2\sin A\cos A(\cos^2A - \sin^2A) = \frac{1}{2}\sin2A\cos 2A = 2 1 2 sin A cos A ( cos 2 A − sin 2 A ) = 2 1 sin 2 A cos 2 A
= 1 4 . 2. sin 2 A cos 2 A = 1 4 sin 4 A = = \frac{1}{4}.2.\sin2A\cos 2A = \frac{1}{4}\sin 4A = = 4 1 .2. sin 2 A cos 2 A = 4 1 sin 4 A = R.H.S.
We have to prove that cos 3 A sin 3 A + sin 3 A cos 3 A = 3 4 sin 4 A \cos^3A\sin3A + \sin^3A\cos 3A = \frac{3}{4}\sin 4A cos 3 A sin 3 A + sin 3 A cos 3 A = 4 3 sin 4 A
L.H.S. = cos 3 A ( 3 sin A − 4 sin 3 A ) + sin 3 A ( 4 cos 3 A − 4 cos A ) = \cos^3A(3\sin A - 4\sin^3A) + \sin^3A(4\cos^3A - 4\cos A) = cos 3 A ( 3 sin A − 4 sin 3 A ) + sin 3 A ( 4 cos 3 A − 4 cos A )
= 3 ( sin A cos 3 A − cos A sin 3 A ) = 3(\sin A\cos^3A - \cos A\sin^3A) = 3 ( sin A cos 3 A − cos A sin 3 A )
Following previous problem we obtain R.H.S.
We have to prove that sin A sin ( 6 0 ∘ + A ) sin ( A + 12 0 ∘ ) = sin 3 A \sin A\sin(60^\circ + A)\sin(A + 120^\circ) = \sin 3A sin A sin ( 6 0 ∘ + A ) sin ( A + 12 0 ∘ ) = sin 3 A
We have proved in problem 32 that sin A sin ( 6 0 ∘ − A ) sin ( 6 0 ∘ + A ) = 1 4 sin 3 A \sin A\sin(60^\circ - A)\sin(60^\circ + A) = \frac{1}{4}\sin 3A sin A sin ( 6 0 ∘ − A ) sin ( 6 0 ∘ + A ) = 4 1 sin 3 A
Thus, we can prove what is required.
We have to prove that cot A + cot ( 6 0 ∘ + A ) + cot ( 12 0 ∘ + A ) = 3 cot 3 A \cot A + \cot(60^\circ + A) + \cot(120^\circ + A) = 3\cot 3A cot A + cot ( 6 0 ∘ + A ) + cot ( 12 0 ∘ + A ) = 3 cot 3 A
L.H.S. = cot A + cot ( 6 0 ∘ + A ) + cot ( 18 0 ∘ − ( 6 0 ∘ − A ) ) = \cot A + \cot(60^\circ + A) + \cot(180^\circ - (60^\circ - A)) = cot A + cot ( 6 0 ∘ + A ) + cot ( 18 0 ∘ − ( 6 0 ∘ − A ))
= cot A + cot ( 6 0 ∘ + A ) − cot ( 6 0 ∘ − A ) = \cot A + \cot(60^\circ + A) - \cot(60^\circ - A) = cot A + cot ( 6 0 ∘ + A ) − cot ( 6 0 ∘ − A )
This we have proved in problem 34.
We have to prove that cos 5 A = 16 cos 5 A − 20 cos 3 A + 5 cos A \cos 5A = 16\cos^5A - 20\cos^3A + 5\cos A cos 5 A = 16 cos 5 A − 20 cos 3 A + 5 cos A
L.H.S. cos ( 2 A + 3 A ) = cos 2 A cos 3 A − sin 2 A sin 3 A \cos(2A + 3A) = \cos 2A\cos 3A - \sin2A\sin3A cos ( 2 A + 3 A ) = cos 2 A cos 3 A − sin 2 A sin 3 A
= ( 2 cos 2 A − 1 ) ( 4 cos 3 A − 3 cos A ) − 2 sin A cos A ( 3 sin A − 4 sin 3 A ) = (2\cos^2A - 1)(4\cos^3A - 3\cos A) - 2\sin A\cos A(3\sin A - 4\sin^3A) = ( 2 cos 2 A − 1 ) ( 4 cos 3 A − 3 cos A ) − 2 sin A cos A ( 3 sin A − 4 sin 3 A )
= 8 cos 5 A − 10 cos 3 A + 3 cos A − 2 cos A sin 2 A [ 3 − 4 ( 1 − cos 2 A ) ] = 8\cos^5A - 10\cos^3A + 3\cos A - 2\cos A\sin^2A[3 - 4(1 - \cos^2A)] = 8 cos 5 A − 10 cos 3 A + 3 cos A − 2 cos A sin 2 A [ 3 − 4 ( 1 − cos 2 A )]
= 8 cos 5 A − 10 cos 3 A + 3 cos A − 2 cos A ( 1 − sin 2 A ) [ 4 cos 2 A − 1 ] = 8\cos^5A - 10\cos^3A + 3\cos A - 2\cos A(1 - \sin^2A)[4\cos^2A - 1] = 8 cos 5 A − 10 cos 3 A + 3 cos A − 2 cos A ( 1 − sin 2 A ) [ 4 cos 2 A − 1 ]
= 16 cos 5 A − 20 cos 3 A + 5 cos A = = 16\cos^5A - 20\cos^3A + 5\cos A = = 16 cos 5 A − 20 cos 3 A + 5 cos A = R.H.S.
We have to prove that sin 5 A = 5 sin A − 20 sin 3 A + 16 sin 5 A \sin 5A = 5\sin A - 20\sin^3A + 16\sin^5A sin 5 A = 5 sin A − 20 sin 3 A + 16 sin 5 A
L.H.S. = sin 5 A = sin ( 2 A + 3 A ) = sin 2 A cos 3 A + sin 3 A cos 2 A = \sin5A = \sin(2A + 3A) = \sin2A\cos3A + \sin3A\cos2A = sin 5 A = sin ( 2 A + 3 A ) = sin 2 A cos 3 A + sin 3 A cos 2 A
= 2 sin A cos A ( 4 cos 3 A − 3 cos A ) + ( 3 sin A − 4 sin 3 A ) ( 1 − 2 sin 2 A ) = 2\sin A\cos A(4\cos^3A - 3\cos A) + (3\sin A - 4\sin^3A)(1 - 2\sin^2A) = 2 sin A cos A ( 4 cos 3 A − 3 cos A ) + ( 3 sin A − 4 sin 3 A ) ( 1 − 2 sin 2 A )
= 2 sin A ( 1 − sin 2 A ) ( 4 cos 2 A − 3 ) + ( 3 sin A − 4 sin 3 A ) ( 1 − 2 sin 2 A ) = 2\sin A(1 - \sin^2A)(4\cos^2A - 3) + (3\sin A - 4\sin^3A)(1 - 2\sin^2A) = 2 sin A ( 1 − sin 2 A ) ( 4 cos 2 A − 3 ) + ( 3 sin A − 4 sin 3 A ) ( 1 − 2 sin 2 A )
= 2 ( sin A − sin 3 A ) ( 1 − 4 sin 2 A ) + ( 3 sin A − 4 sin 3 A ) ( 1 − 2 sin 2 A ) = 2(\sin A - \sin^3A)(1 - 4\sin^2A) + (3\sin A - 4\sin^3A)(1 - 2\sin^2A) = 2 ( sin A − sin 3 A ) ( 1 − 4 sin 2 A ) + ( 3 sin A − 4 sin 3 A ) ( 1 − 2 sin 2 A )
= 5 sin A − 20 sin 3 A + 16 sin 5 A = = 5\sin A - 20\sin^3A + 16\sin^5A = = 5 sin A − 20 sin 3 A + 16 sin 5 A = R.H.S.
We have to prove that cos 4 A − cos 4 B = 8 ( cos A − cos B ) ( cos A + cos B ) ( cos A − sin B ) ( cos A + sin B ) \cos 4A - \cos 4B = 8(\cos A - \cos B)(\cos A + \cos B)(\cos A - \sin B)(\cos A + \sin B) cos 4 A − cos 4 B = 8 ( cos A − cos B ) ( cos A + cos B ) ( cos A − sin B ) ( cos A + sin B )
R.H.S. = 2 ( 2 cos 2 A − 2 cos 2 B ) ( 2 cos 2 A − 2 sin 2 B ) = 2(2\cos^2A - 2\cos^2B)(2\cos^2A - 2\sin^2B) = 2 ( 2 cos 2 A − 2 cos 2 B ) ( 2 cos 2 A − 2 sin 2 B )
= 2 ( cos 2 A − cos 2 B ) ( cos 2 A + cos 2 B ) = 2(\cos 2A - \cos 2B)(\cos 2A + \cos 2B) = 2 ( cos 2 A − cos 2 B ) ( cos 2 A + cos 2 B )
= 2 ( cos 2 2 A − cos 2 2 B ) = cos 4 A − cos 4 B = = 2(\cos^22A - \cos^22B) = \cos4A - \cos4B = = 2 ( cos 2 2 A − cos 2 2 B ) = cos 4 A − cos 4 B = L.H.S.
We have to prove that tan 4 A = 4 tan A − 4 tan 3 A 1 − 6 tan 2 A + tan 4 A \tan 4A = \frac{4\tan A - 4\tan^3A}{1 - 6\tan^2A + \tan^4A} tan 4 A = 1 − 6 t a n 2 A + t a n 4 A 4 t a n A − 4 t a n 3 A
L.H.S. = tan 4 A = tan ( 2 A + 2 A ) = 2 tan 2 A 1 − tan 2 2 A = \tan 4A = \tan(2A + 2A) = \frac{2\tan2A}{1 - \tan^22A} = tan 4 A = tan ( 2 A + 2 A ) = 1 − t a n 2 2 A 2 t a n 2 A
= 2. 2 tan A 1 − tan 2 A 1 − ( 2 tan A 1 − tan 2 A ) 2 = \frac{2.\frac{2\tan A}{1 - \tan^2A}}{1 - \left(\frac{2\tan A}{1 - \tan^2A}\right)^2} = 1 − ( 1 − t a n 2 A 2 t a n A ) 2 2. 1 − t a n 2 A 2 t a n A
Solving this yields R.H.S.
Given 2 tan A = 3 tan B , 2\tan A = 3\tan B, 2 tan A = 3 tan B , we have to prove that tan ( A − B ) = sin 2 B 5 − cos 2 B \tan (A- B) = \frac{\sin 2B}{5 - \cos 2B} tan ( A − B ) = 5 − c o s 2 B s i n 2 B
tan A = 3 2 tan B \tan A = \frac{3}{2}\tan B tan A = 2 3 tan B
tan ( A − B ) = tan A − tan B 1 + tan A tan B = 3 2 tan B − tan B 1 + 3 2 tan 2 B \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A\tan B} = \frac{\frac{3}{2}\tan B - \tan B}{1 + \frac{3}{2}\tan^2B} tan ( A − B ) = 1 + t a n A t a n B t a n A − t a n B = 1 + 2 3 t a n 2 B 2 3 t a n B − t a n B
= tan B 2 + 3 tan 2 B = sin B cos B 2 cos 2 B + 3 sin 2 B = \frac{\tan B}{2 + 3\tan^2B} = \frac{\sin B\cos B}{2\cos^2B + 3\sin^2B} = 2 + 3 t a n 2 B t a n B = 2 c o s 2 B + 3 s i n 2 B s i n B c o s B
= sin B cos B 1 + cos 2 B + 3. 1 2 ( 1 − cos 2 B ) = \frac{\sin B\cos B}{1 + \cos 2B + 3.\frac{1}{2}(1 - \cos 2B)} = 1 + c o s 2 B + 3. 2 1 ( 1 − c o s 2 B ) s i n B c o s B
= sin 2 B 5 − cos 2 B = = \frac{\sin 2B}{5 - \cos 2B} = = 5 − c o s 2 B s i n 2 B = R.H.S.
Given sin A + sin B = x \sin A + \sin B = x sin A + sin B = x and cos A + cos B = y , \cos A + \cos B = y, cos A + cos B = y , we have to show that sin ( A + B ) = 2 x y x 2 + y 2 \sin(A + B) = \frac{2xy}{x^2 +
y^2} sin ( A + B ) = x 2 + y 2 2 x y
2 x y = 2 ( sin A + sin B ) ( cos A + cos B ) 2xy = 2(\sin A + \sin B)(\cos A + \cos B) 2 x y = 2 ( sin A + sin B ) ( cos A + cos B )
= 2 ( sin A cos A + sin B cos B + sin A cos B + cos A sin B ) = 2(\sin A\cos A + \sin B\cos B + \sin A\cos B + \cos A\sin B) = 2 ( sin A cos A + sin B cos B + sin A cos B + cos A sin B )
= sin 2 A + sin 2 B + 2 sin ( A + B ) = \sin2A + \sin 2B + 2\sin(A + B) = sin 2 A + sin 2 B + 2 sin ( A + B )
= 2 sin ( A + B ) cos ( A − B ) + 2 sin ( A + B ) = 2 sin ( A + B ) [ cos ( A − B ) + 1 ] = 2\sin(A + B)\cos(A - B) + 2\sin(A + B) = 2\sin(A + B)[\cos(A - B) + 1] = 2 sin ( A + B ) cos ( A − B ) + 2 sin ( A + B ) = 2 sin ( A + B ) [ cos ( A − B ) + 1 ]
x 2 + y 2 = ( sin A + sin B ) 2 + ( cos A + cos B ) 2 x^2 + y^2 = (\sin A + \sin B)^2 + (\cos A + \cos B)^2 x 2 + y 2 = ( sin A + sin B ) 2 + ( cos A + cos B ) 2
= 2 + 2 ( cos A cos B + sin A sin B ) = 2 [ 1 + cos ( A − B ) ] = 2 + 2(\cos A\cos B + \sin A \sin B) = 2[1 + \cos (A - B)] = 2 + 2 ( cos A cos B + sin A sin B ) = 2 [ 1 + cos ( A − B )]
∴ 2 x y x 2 + y 2 = sin ( A + B ) \therefore \frac{2xy}{x^2 + y^2} = \sin(A + B) ∴ x 2 + y 2 2 x y = sin ( A + B )
Given A = π 2 n + 1 , A= \frac{\pi}{2^n + 1}, A = 2 n + 1 π , we have to prove that cos A . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A = 1 2 n \cos A.\cos 2A. \cos2^2A.\ldots.\cos2^{n - 1}A =
\frac{1}{2^n} cos A . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A = 2 n 1
L.H.S. = cos A . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A = \cos A.\cos 2A. \cos2^2A.\ldots.\cos2^{n - 1}A = cos A . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A
= 1 2 sin A ( 2 sin A cos A ) . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A = \frac{1}{2\sin A}(2\sin A\cos A).\cos 2A. \cos2^2A.\ldots.\cos2^{n - 1}A = 2 s i n A 1 ( 2 sin A cos A ) . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A
= 1 2 sin A sin 2 A . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A = \frac{1}{2\sin A}\sin 2A.\cos 2A.\cos2^2A.\ldots.\cos2^{n - 1}A = 2 s i n A 1 sin 2 A . cos 2 A . cos 2 2 A . … . cos 2 n − 1 A
= 1 2 2 sin A ( 2 sin 2 A cos 2 A ) cos 2 2 A . … . cos 2 n − 1 A = \frac{1}{2^2\sin A}(2\sin 2A\cos 2A)\cos2^2A.\ldots.\cos2^{n - 1}A = 2 2 s i n A 1 ( 2 sin 2 A cos 2 A ) cos 2 2 A . … . cos 2 n − 1 A
Proceeding similarly
= 1 2 n sin A sin 2 n A = 1 2 n sin A sin ( π − A ) = 1 2 n = = \frac{1}{2^n\sin A}\sin2^n A = \frac{1}{2^n\sin A}\sin(\pi - A) = \frac{1}{2^n} = = 2 n s i n A 1 sin 2 n A = 2 n s i n A 1 sin ( π − A ) = 2 n 1 = R.H.S.
Given tan A = y x , \tan A = \frac{y}{x}, tan A = x y , we have to prove that x cos 2 A + y sin 2 A = x x\cos 2A + y\sin 2A = x x cos 2 A + y sin 2 A = x
∵ tan A = y x ∴ sin A = y x 2 + y 2 , cos A = x x 2 + y 2 \because \tan A = \frac{y}{x} \therefore \sin A = \frac{y}{\sqrt{x^2 + y^2}}, \cos A = \frac{x}{\sqrt{x^2 + y^2}} ∵ tan A = x y ∴ sin A = x 2 + y 2 y , cos A = x 2 + y 2 x
∴ x cos 2 A + y sin 2 A = x ( cos 2 A − sin 2 A ) + 2 y sin A cos A = x ( x 2 − y 2 x 2 + y 2 ) + 2 x 2 y x 2 + y 2 \therefore x\cos 2A + y\sin 2A = x(\cos^2A - \sin^2A) + 2y\sin A\cos A = x\left(\frac{x^2 - y^2}{x^2 + y^2}\right) +
2\frac{x^2y}{x^2 + y^2} ∴ x cos 2 A + y sin 2 A = x ( cos 2 A − sin 2 A ) + 2 y sin A cos A = x ( x 2 + y 2 x 2 − y 2 ) + 2 x 2 + y 2 x 2 y
= x = = x = = x = R.H.S.
Given tan 2 A = 1 + 2 tan 2 B , \tan^2A = 1 + 2\tan^2B, tan 2 A = 1 + 2 tan 2 B , we have to prove that cos 2 B = 1 + 2 cos 2 A \cos 2B = 1 + 2\cos 2A cos 2 B = 1 + 2 cos 2 A
1 + 2 cos 2 A = 1 + 2. 1 − tan 2 A 1 + tan 2 A = 3 − tan 2 A 1 + tan 2 A 1 + 2\cos 2A = 1 + 2.\frac{1 - \tan^2A}{1 + \tan^2A} = \frac{3 - \tan^2A}{1 + \tan^2A} 1 + 2 cos 2 A = 1 + 2. 1 + t a n 2 A 1 − t a n 2 A = 1 + t a n 2 A 3 − t a n 2 A
= 3 − 1 − 2 tan 2 B 2 + 2 tan 2 B = 1 − tan 2 B 1 + tan 2 B = cos 2 B = = \frac{3 - 1 - 2\tan^2B}{2 + 2\tan^2B} = \frac{1 - \tan^2B}{1 + \tan^2B} = \cos 2B = = 2 + 2 t a n 2 B 3 − 1 − 2 t a n 2 B = 1 + t a n 2 B 1 − t a n 2 B = cos 2 B = L.H.S.
Given cos 2 A = 3 cos 2 B − 1 3 − cos 2 B , \cos 2A = \frac{3\cos 2B - 1}{3 - \cos 2B}, cos 2 A = 3 − c o s 2 B 3 c o s 2 B − 1 , we have to prove that tan A = 2 tan B \tan A = \sqrt{2}\tan B tan A = 2 tan B
cos 2 A = 3 cos 2 B − 1 3 − cos 2 B \cos 2A = \frac{3\cos 2B - 1}{3 - \cos 2B} cos 2 A = 3 − c o s 2 B 3 c o s 2 B − 1
⇒ 1 − tan 2 A 1 + tan B = 3 − 3 tan 2 B − 1 − tan 2 B 3 + 3 tan 2 B − 1 + tan 2 B \Rightarrow \frac{1 - \tan^2A}{1 + \tan^B} = \frac{3 - 3\tan^2B - 1 - \tan^2B}{3 + 3\tan^2B - 1 + \tan^2B} ⇒ 1 + t a n B 1 − t a n 2 A = 3 + 3 t a n 2 B − 1 + t a n 2 B 3 − 3 t a n 2 B − 1 − t a n 2 B
= 1 − 2 tan 2 B 1 + 2 tan 2 B = \frac{1 - 2\tan^2B}{1 + 2\tan^2B} = 1 + 2 t a n 2 B 1 − 2 t a n 2 B
∴ tan 2 A = 2 tan 2 B ⇒ tan A = 2 tan B \therefore \tan^2A = 2\tan^2B \Rightarrow \tan A = \sqrt{2}\tan B ∴ tan 2 A = 2 tan 2 B ⇒ tan A = 2 tan B
Given tan B = 3 tan A , \tan B = 3\tan A, tan B = 3 tan A , we have to prove that tan ( A + B ) = 2 sin 2 B 1 + cos 2 B \tan(A + B) = \frac{2\sin 2B}{1 + \cos 2B} tan ( A + B ) = 1 + c o s 2 B 2 s i n 2 B
tan ( A + B ) = tan A + tan B 1 − tan A tan B \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B} tan ( A + B ) = 1 − t a n A t a n B t a n A + t a n B
= 4 3 tan B 1 − tan 2 B 3 = 4 tan B 3 − tan 2 B = \frac{\frac{4}{3}\tan B}{1 - \frac{\tan^2B}{3}} = \frac{4\tan B}{3 - \tan^2B} = 1 − 3 t a n 2 B 3 4 t a n B = 3 − t a n 2 B 4 t a n B
= 4 sin B cos B 3 cos 2 B − sin 2 B = 2 sin 2 B 2 cos 2 B + cos 2 B = \frac{4\sin B\cos B}{3\cos^2B - \sin^2B} = \frac{2\sin2B}{2\cos^2B + \cos2B} = 3 c o s 2 B − s i n 2 B 4 s i n B c o s B = 2 c o s 2 B + c o s 2 B 2 s i n 2 B
= 2 sin 2 B 1 + cos 2 B = = \frac{2\sin2B}{1 + \cos2B} = = 1 + c o s 2 B 2 s i n 2 B = R.H.S.
Given x sin A = y cos A , x\sin A = y\cos A, x sin A = y cos A , we have to prove that x sec 2 A + y cosec 2 A = x \frac{x}{\sec 2A} + \frac{y}{\cosec 2A} = x s e c 2 A x + c o s e c 2 A y = x
Given tan A = y x ∴ sin A = y x 2 + y 2 & cos A = x x 2 + y 2 \tan A = \frac{y}{x} \therefore \sin A = \frac{y}{\sqrt{x^2 + y^2}} \& \cos A = \frac{x}{\sqrt{x^2 + y^2}} tan A = x y ∴ sin A = x 2 + y 2 y & cos A = x 2 + y 2 x
L.H.S. = x sec 2 A + y cosec 2 A = \frac{x}{\sec 2A} + \frac{y}{\cosec 2A} = s e c 2 A x + c o s e c 2 A y
= x cos 2 A + y sin 2 A = x ( cos 2 A − sin 2 A ) + 2 y sin A cos A = x\cos2A + y\sin2A = x(\cos^2A - \sin^2A) + 2y\sin A\cos A = x cos 2 A + y sin 2 A = x ( cos 2 A − sin 2 A ) + 2 y sin A cos A
x x 2 − y 2 x 2 + y 2 + 2 x y 2 x 2 + y 2 x\frac{x^2 - y^2}{x^2 + y^2} + \frac{2xy^2}{x^2 + y^2} x x 2 + y 2 x 2 − y 2 + x 2 + y 2 2 x y 2
= x = x = x
Given tan A = sec 2 B , \tan A = \sec 2B, tan A = sec 2 B , we have to prove that sin 2 A = 1 − tan 4 B 1 + tan 4 B \sin 2A = \frac{1 - \tan^4B}{1 + \tan^4B} sin 2 A = 1 + t a n 4 B 1 − t a n 4 B
tan A = 1 cos 2 B = 1 + tan 2 B 1 − tan 2 B \tan A = \frac{1}{\cos 2B} = \frac{1 + \tan^2B}{1 - \tan^2B} tan A = c o s 2 B 1 = 1 − t a n 2 B 1 + t a n 2 B
∴ sin A = 1 + tan 2 B 2 + 2 tan 4 B \therefore \sin A = \frac{1 + \tan^2B}{\sqrt{2 + 2\tan^4B}} ∴ sin A = 2 + 2 t a n 4 B 1 + t a n 2 B
and cos A = 1 − tan 2 B 2 + 2 tan 4 B \cos A = \frac{1 - \tan^2B}{\sqrt{2 + 2\tan^4B}} cos A = 2 + 2 t a n 4 B 1 − t a n 2 B
L.H.S. sin 2 A = 2 sin A cos A = 1 − tan 4 B 1 + tan 4 B = \sin 2A = 2\sin A\cos A = \frac{1 - \tan^4B}{1 + \tan^4B} = sin 2 A = 2 sin A cos A = 1 + t a n 4 B 1 − t a n 4 B = R.H.S.
Given A = π 3 , A = \frac{\pi}{3}, A = 3 π , we have to prove that cos A . cos 2 A . cos 3 A . cos 4 A . cos 5 A . cos 6 A = − 1 16 \cos A.\cos 2A. \cos 3A.\cos 4A.\cos 5A.\cos 6A = -\frac{1}{16} cos A . cos 2 A . cos 3 A . cos 4 A . cos 5 A . cos 6 A = − 16 1
L.H.S. = 1 8 2 cos A . cos 6 A . 2 cos 2 A . cos 5 A . 2 cos 3 A cos 4 A = \frac{1}{8}2\cos A.\cos 6A.2\cos 2A.\cos 5A.2\cos 3A\cos 4A = 8 1 2 cos A . cos 6 A .2 cos 2 A . cos 5 A .2 cos 3 A cos 4 A
= 1 8 ( cos 7 A 2 + cos 5 A 2 ) ( cos 7 A 2 + cos 3 A 2 ) ( cos 7 A 2 + cos A 2 ) = \frac{1}{8}\left(\cos \frac{7A}{2} + \cos \frac{5A}{2}\right)\left(\cos \frac{7A}{2} + \cos
\frac{3A}{2}\right)\left(\cos \frac{7A}{2} + \cos \frac{A}{2}\right) = 8 1 ( cos 2 7 A + cos 2 5 A ) ( cos 2 7 A + cos 2 3 A ) ( cos 2 7 A + cos 2 A )
= 1 8 [ cos ( π + π 6 ) + cos ( π − π 6 ) ] [ cos ( π + π 6 ) + cos ( π 2 ) ] + [ cos ( π + π 6 ) + cos π 6 ] = \frac{1}{8}\left[\cos\left(\pi + \frac{\pi}{6}\right) + \cos \left(\pi -
\frac{\pi}{6}\right)\right]\left[\cos\left(\pi + \frac{\pi}{6}\right) + \cos \left(\frac{\pi}{2}\right)\right] +
\left[\cos\left(\pi + \frac{\pi}{6}\right) + \cos \frac{\pi}{6}\right] = 8 1 [ cos ( π + 6 π ) + cos ( π − 6 π ) ] [ cos ( π + 6 π ) + cos ( 2 π ) ] + [ cos ( π + 6 π ) + cos 6 π ]
= − 1 16 = -\frac{1}{16} = − 16 1
Given A = π 15 , A = \frac{\pi}{15}, A = 15 π , we have to prove that cos 2 A . cos 4 A . cos 8 A . cos 14 A = 1 16 \cos2A.\cos4A.\cos8A.\cos14A = \frac{1}{16} cos 2 A . cos 4 A . cos 8 A . cos 14 A = 16 1
cos 14 A = cos 14 π 15 = cos ( 2 π − 16 π 15 ) = cos 16 A \cos 14A = \cos \frac{14\pi}{15} = \cos \left(2\pi - \frac{16\pi}{15}\right) = \cos 16A cos 14 A = cos 15 14 π = cos ( 2 π − 15 16 π ) = cos 16 A
L.H.S. = cos 2 A . cos 4 A . cos 8 A . cos 16 A = 1 2 sin 2 A . 2 sin 2 A . cos 2 A . cos 4 A . cos 8 A . cos 16 A = \cos2A.\cos4A.\cos8A.\cos16A = \frac{1}{2\sin2A}.2\sin2A.\cos2A.\cos4A.\cos8A.\cos16A = cos 2 A . cos 4 A . cos 8 A . cos 16 A = 2 s i n 2 A 1 .2 sin 2 A . cos 2 A . cos 4 A . cos 8 A . cos 16 A
= 1 2 sin 2 A sin 4 A . cos 4 A . cos 8 A . cos 16 A = 1 2 2 sin 2 A sin 8 A . cos 8 A . cos 16 A = \frac{1}{2\sin2A}\sin4A.\cos4A.\cos8A.\cos16A = \frac{1}{2^2\sin 2A}\sin8A.\cos8A.\cos16A = 2 s i n 2 A 1 sin 4 A . cos 4 A . cos 8 A . cos 16 A = 2 2 s i n 2 A 1 sin 8 A . cos 8 A . cos 16 A
= 1 2 4 sin 2 A sin 32 A = 1 16 sin 2 A sin ( 2 π + 2 A ) = 1 16 = = \frac{1}{2^4\sin 2A}\sin32A = \frac{1}{16\sin2A}\sin(2\pi + 2A) = \frac{1}{16} = = 2 4 s i n 2 A 1 sin 32 A = 16 s i n 2 A 1 sin ( 2 π + 2 A ) = 16 1 = R.H.S.
Given tan A tan B = a − b a + b , \tan A\tan B = \sqrt{\frac{a - b}{a + b}}, tan A tan B = a + b a − b , we have to prove that ( a − b cos 2 A ) ( a − b cos 2 B ) = a 2 − b 2 (a - b\cos2A)(a - b\cos2B) = a^2 -
b^2 ( a − b cos 2 A ) ( a − b cos 2 B ) = a 2 − b 2
L.H.S. = ( a − b cos 2 A ) ( a − b cos 2 B ) = [ a − b 1 − tan 2 A 1 + tan 2 A ] [ a − b 1 − tan 2 B 1 + tan 2 B ] = (a - b\cos2A)(a - b\cos2B) = \left[a -b\frac{1 - \tan^2A}{1 + \tan^2A}\right]\left[a - b\frac{1 - \tan^2B}{1 +
\tan^2B}\right] = ( a − b cos 2 A ) ( a − b cos 2 B ) = [ a − b 1 + t a n 2 A 1 − t a n 2 A ] [ a − b 1 + t a n 2 B 1 − t a n 2 B ]
= [ a − b 1 − tan 2 A 1 + tan 2 A ] [ a − b 1 − a − b ( a + b ) tan 2 A 1 + a − b ( a + b ) tan 2 A ] = \left[a -b\frac{1 - \tan^2A}{1 + \tan^2A}\right]\left[a - b\frac{1 - \frac{a - b}{(a + b)\tan^2A}}{1 + \frac{a -
b}{(a + b)\tan^2A}}\right] = [ a − b 1 + t a n 2 A 1 − t a n 2 A ] [ a − b 1 + ( a + b ) t a n 2 A a − b 1 − ( a + b ) t a n 2 A a − b ]
Solving this yields a 2 − b 2 \frac{a^2 - b^2}{} a 2 − b 2
Given sin A = 1 2 \sin A = \frac{1}{2} sin A = 2 1 and sin B = 1 3 , \sin B = \frac{1}{3}, sin B = 3 1 , we have to find the value of sin ( A + B ) \sin(A + B) sin ( A + B ) and
sin ( 2 A + 2 B ) \sin(2A + 2B) sin ( 2 A + 2 B )
cos A = 3 2 \cos A = \frac{\sqrt{3}}{2} cos A = 2 3 and cos B = 8 3 \cos B = \frac{\sqrt{8}}{3} cos B = 3 8
sin ( A + B ) = sin A cos B + cos A sin B = 8 6 + 3 6 = 8 + 3 6 \sin(A + B) = \sin A\cos B + \cos A\sin B = \frac{\sqrt{8}}{6} + \frac{\sqrt{3}}{6} = \frac{\sqrt{8} + \sqrt{3}}{6} sin ( A + B ) = sin A cos B + cos A sin B = 6 8 + 6 3 = 6 8 + 3
sin ( 2 A + 2 B ) = sin 2 A cos 2 B + cos 2 A sin 2 B \sin(2A + 2B) = \sin 2A\cos 2B + \cos 2A\sin 2B sin ( 2 A + 2 B ) = sin 2 A cos 2 B + cos 2 A sin 2 B
= 2 sin A cos A ( cos 2 B − sin 2 B ) + 2 sin B cos B ( cos 2 A − sin 2 A ) = 2\sin A\cos A(\cos^2B - \sin^2B) + 2\sin B\cos B(\cos^2A - \sin^2A) = 2 sin A cos A ( cos 2 B − sin 2 B ) + 2 sin B cos B ( cos 2 A − sin 2 A )
Substituting the values we obtain the desired result.
85 and 86 have been left as exercises.
cos A = 3 10 = 1 − tan 2 A 2 1 + tan 2 A 2 = 3 10 \cos A = \frac{3}{10} = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}} = \frac{3}{10} cos A = 10 3 = 1 + t a n 2 2 A 1 − t a n 2 2 A = 10 3
Let x = tan A 2 , x = \tan \frac{A}{2}, x = tan 2 A , then 1 − x 2 1 + x 2 = 3 10 \frac{1 - x^2}{1 + x^2} = \frac{3}{10} 1 + x 2 1 − x 2 = 10 3
x = ± 7 13 x = \pm \sqrt{\frac{7}{13}} x = ± 13 7
The reason for two values is that cos A \cos A cos A may lie in first or fourth quadrant. If it is in first quadrant then
tan A 2 \tan \frac{A}{2} tan 2 A will be positive and if it is in fourth quadrant then tan A 2 \tan \frac{A}{2} tan 2 A will be negative.
Given sin A + sin B = x \sin A + \sin B = x sin A + sin B = x and cos A + cos B = y , \cos A + \cos B = y, cos A + cos B = y , we have to find the value of tan A − B 2 \tan \frac{A - B}{2} tan 2 A − B
tan A − B 2 = tan A 2 − tan B 2 1 + tan A 2 tan B 2 \tan \frac{A - B}{2} = \frac{\tan \frac{A}{2} - \tan \frac{B}{2}}{1 + \tan\frac{A}{2}\tan\frac{B}{2}} tan 2 A − B = 1 + t a n 2 A t a n 2 B t a n 2 A − t a n 2 B
= sin A 2 cos B 2 − sin B 2 cos A 2 cos A 2 cos B 2 − sin A 2 sin B 2 = \frac{\sin \frac{A}{2}\cos\frac{B}{2} - \sin\frac{B}{2}\cos\frac{A}{2}}{\cos\frac{A}{2}\cos\frac{B}{2} -
\sin\frac{A}{2}\sin\frac{B}{2}} = c o s 2 A c o s 2 B − s i n 2 A s i n 2 B s i n 2 A c o s 2 B − s i n 2 B c o s 2 A
Also, tan ( A − B ) = 2 tan A − B 2 1 − tan 2 A − B 2 \tan(A - B) = \frac{2\tan\frac{A - B}{2}}{1 - \tan^2\frac{A - B}{2}} tan ( A − B ) = 1 − t a n 2 2 A − B 2 t a n 2 A − B
Let tan A − B 2 = a , \tan\frac{A - B}{2} = a, tan 2 A − B = a , then tan ( A − B ) = 2 a 1 + a 2 \tan(A - B) = \frac{2a}{1 + a^2} tan ( A − B ) = 1 + a 2 2 a
x 2 + y 2 = 2 + 2 sin A sin B + 2 cos A cos B x^2 + y^2 = 2 + 2\sin A\sin B + 2\cos A\cos B x 2 + y 2 = 2 + 2 sin A sin B + 2 cos A cos B
Solving this yields tan A − B 2 = 4 − x 2 − y 2 x 2 + y 2 \tan\frac{A - B}{2} = \sqrt{\frac{4 - x^2 - y^2}{x^2 + y^2}} tan 2 A − B = x 2 + y 2 4 − x 2 − y 2
We have to prove that ( cos A + cos B ) 2 + ( sin A − sin B ) 2 = 4 cos 2 A + B 2 (\cos A + \cos B)^2 + (\sin A - \sin B)^2 = 4\cos^2 \frac{A + B}{2} ( cos A + cos B ) 2 + ( sin A − sin B ) 2 = 4 cos 2 2 A + B
L.H.S. = cos 2 A + cos 2 B + 2 cos A cos B + sin 2 A + sin 2 B − 2 sin A sin B = \cos^2A + \cos^2B + 2\cos A\cos B + \sin^2A + \sin^2B - 2\sin A\sin B = cos 2 A + cos 2 B + 2 cos A cos B + sin 2 A + sin 2 B − 2 sin A sin B
= 2 + 2 cos ( A + B ) = 4 cos 2 A + B 2 = = 2 + 2\cos(A + B) = 4\cos^2\frac{A + B}{2} = = 2 + 2 cos ( A + B ) = 4 cos 2 2 A + B = R.H.S.
We have to prove that ( cos A + cos B ) 2 + ( sin A + sin B ) 2 = 4 cos 2 A − B 2 (\cos A + \cos B)^2 + (\sin A + \sin B)^2 = 4\cos^2 \frac{A - B}{2} ( cos A + cos B ) 2 + ( sin A + sin B ) 2 = 4 cos 2 2 A − B
L.H.S. = cos 2 A + cos 2 B + 2 cos A cos B + sin 2 A + sin 2 B + 2 sin A sin B = \cos^2A + \cos^2B + 2\cos A\cos B + \sin^2A + \sin^2B + 2\sin A\sin B = cos 2 A + cos 2 B + 2 cos A cos B + sin 2 A + sin 2 B + 2 sin A sin B
= 2 + 2 cos ( A − B ) = 4 cos 2 A − B 2 = = 2 + 2\cos(A - B) = 4\cos^2\frac{A - B}{2} = = 2 + 2 cos ( A − B ) = 4 cos 2 2 A − B = R.H.S.
We hve to prove that ( cos A − cos B ) 2 + ( sin A − sin B ) 2 = 4 sin 2 A − B 2 (\cos A - \cos B)^2 + (\sin A - \sin B)^2 = 4\sin^2 \frac{A - B}{2} ( cos A − cos B ) 2 + ( sin A − sin B ) 2 = 4 sin 2 2 A − B
L.H.S. = cos 2 A + cos 2 B − 2 cos A cos B + sin 2 A + sin 2 B + 2 sin A sin B = \cos^2A + \cos^2B - 2\cos A\cos B + \sin^2A + \sin^2B + 2\sin A\sin B = cos 2 A + cos 2 B − 2 cos A cos B + sin 2 A + sin 2 B + 2 sin A sin B
= 2 − 2 cos ( A − B ) = 4 sin 2 A − B 2 = = 2 - 2\cos(A - B) = 4\sin^2\frac{A - B}{2} = = 2 − 2 cos ( A − B ) = 4 sin 2 2 A − B = R.H.S.
We have to prove that sin 2 ( π 8 + A 2 ) − sin 2 ( π 8 − A 2 ) = 1 2 sin A \sin^2\left(\frac{\pi}{8} + \frac{A}{2}\right) - \sin^2\left(\frac{\pi}{8} -\frac{A}{2}\right) =
\frac{1}{\sqrt{2}}\sin A sin 2 ( 8 π + 2 A ) − sin 2 ( 8 π − 2 A ) = 2 1 sin A
L.H.S. = 1 − cos ( π 4 + A ) 2 − 1 − cos ( π 4 − A ) 2 = \frac{1 - \cos\left(\frac{\pi}{4} + A\right)}{2} - \frac{1 - \cos\left(\frac{\pi}{4} - A\right)}{2} = 2 1 − c o s ( 4 π + A ) − 2 1 − c o s ( 4 π − A )
= cos ( π 4 − A ) − cos ( π 4 + A ) 2 = \frac{\cos\left(\frac{\pi}{4} - A\right) - \cos\left(\frac{\pi}{4} + A\right)}{2} = 2 c o s ( 4 π − A ) − c o s ( 4 π + A )
= 2 sin π 4 sin A 2 = 1 2 sin A = = \frac{2\sin\frac{\pi}{4}\sin A}{2} = \frac{1}{\sqrt{2}}\sin A = = 2 2 s i n 4 π s i n A = 2 1 sin A = R.H.S.
We have to prove that ( tan 4 A + tan 2 A ) ( 1 − tan 2 3 A tan 2 A ) = 2 tan 3 A sec 2 A (\tan 4A + \tan 2A)(1 - \tan^23A\tan^2A) = 2\tan 3A\sec^2A ( tan 4 A + tan 2 A ) ( 1 − tan 2 3 A tan 2 A ) = 2 tan 3 A sec 2 A
L.H.S. = ( tan 4 A + tan 2 A ) ( 1 + tan 3 A tan A ) ( 1 − tan 3 A tan A ) = (\tan 4A + \tan 2A)(1 + \tan 3A\tan A)(1 - \tan 3A\tan A) = ( tan 4 A + tan 2 A ) ( 1 + tan 3 A tan A ) ( 1 − tan 3 A tan A )
= ( sin 4 A cos 4 A + sin 2 A cos 2 A ) ( c o s 3 A cos A + sin 3 A sin A cos 3 A cos A ) ( c o s 3 A cos A − sin 3 A sin A cos 3 A − cos A ) = \left(\frac{\sin 4A}{\cos 4A} + \frac{\sin 2A}{\cos 2A}\right)\left(\frac{cos 3A\cos A + \sin 3A\sin A}{\cos 3A\cos
A}\right)\left(\frac{cos 3A\cos A - \sin 3A\sin A}{\cos 3A - \cos A}\right) = ( c o s 4 A s i n 4 A + c o s 2 A s i n 2 A ) ( c o s 3 A c o s A cos 3 A c o s A + s i n 3 A s i n A ) ( c o s 3 A − c o s A cos 3 A c o s A − s i n 3 A s i n A )
= sin 6 A cos 4 A cos 2 A . cos 4 A cos 3 A cos A cos 2 A cos 3 A cos A = \frac{\sin 6A}{\cos 4A\cos 2A}.\frac{\cos 4A}{\cos 3A\cos A}\frac{\cos 2A}{\cos 3A\cos A} = c o s 4 A c o s 2 A s i n 6 A . c o s 3 A c o s A c o s 4 A c o s 3 A c o s A c o s 2 A
= 2 sin 3 A cos 3 A cos 2 3 A cos 2 A = 2 tan 3 A sec 2 A = = \frac{2\sin3A\cos3A}{\cos^23A\cos^2A} = 2\tan3A\sec^2A = = c o s 2 3 A c o s 2 A 2 s i n 3 A c o s 3 A = 2 tan 3 A sec 2 A = R.H.S.
We have to prove that ( 1 + tan A 2 − sec A 2 ) ( 1 + tan A 2 + sec A 2 ) = sin A sec 2 A 2 \left(1 + \tan \frac{A}{2} - \sec\frac{A}{2}\right)\left(1 + \tan \frac{A}{2} +
\sec\frac{A}{2}\right) = \sin A\sec^2\frac{A}{2} ( 1 + tan 2 A − sec 2 A ) ( 1 + tan 2 A + sec 2 A ) = sin A sec 2 2 A
L.H.S. = ( 1 + tan A 2 − sec A 2 ) ( 1 + tan A 2 + sec A 2 ) = \left(1 + \tan \frac{A}{2} - \sec\frac{A}{2}\right)\left(1 + \tan \frac{A}{2} +
\sec\frac{A}{2}\right) = ( 1 + tan 2 A − sec 2 A ) ( 1 + tan 2 A + sec 2 A )
= ( 1 + tan A 2 ) 2 − s e c 2 A 2 = 2 tan A 2 = \left(1 + \tan\frac{A}{2}\right)^2 - sec^2\frac{A}{2} = 2\tan\frac{A}{2} = ( 1 + tan 2 A ) 2 − se c 2 2 A = 2 tan 2 A
= 2 sin A 2 cos A 2 cos 2 A 2 = sin A sec 2 A 2 = = \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{\cos^2\frac{A}{2}} = \sin A\sec^2\frac{A}{2} = = c o s 2 2 A 2 s i n 2 A c o s 2 A = sin A sec 2 2 A = R.H.S.
We have to prove that 1 + sin A − cos A 1 + sin A + cos A = tan A 2 \frac{1 + \sin A - \cos A}{1 + \sin A + \cos A} = \tan \frac{A}{2} 1 + s i n A + c o s A 1 + s i n A − c o s A = tan 2 A
L.H.S. = ( 1 − cos A ) + sin A ( 1 + cos A ) + sin A = \frac{(1 - \cos A) + \sin A}{(1 + \cos A) + \sin A} = ( 1 + c o s A ) + s i n A ( 1 − c o s A ) + s i n A
= 2 sin 2 A 2 + 2 sin A 2 cos A 2 2 cos 2 A 2 + 2 sin A 2 cos A 2 = \frac{2\sin^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}}{2\cos^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}} = 2 c o s 2 2 A + 2 s i n 2 A c o s 2 A 2 s i n 2 2 A + 2 s i n 2 A c o s 2 A
= sin A 2 ( sin A 2 + cos A 2 ) cos A 2 ( sin A 2 + cos A 2 ) = \frac{\sin\frac{A}{2}\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)}{\cos\frac{A}{2}\left(\sin\frac{A}{2} +
\cos\frac{A}{2}\right)} = c o s 2 A ( s i n 2 A + c o s 2 A ) s i n 2 A ( s i n 2 A + c o s 2 A )
= tan A 2 = = \tan\frac{A}{2} = = tan 2 A = R.H.S.
We have to prove that 1 − tan A 2 1 + tan A 2 = 1 + sin A cos A = tan ( π 4 + A 2 ) \frac{1 - \tan \frac{A}{2}}{1 + \tan \frac{A}{2}} = \frac{1 + \sin A}{\cos A} = \tan
\left(\frac{\pi}{4} + \frac{A}{2}\right) 1 + t a n 2 A 1 − t a n 2 A = c o s A 1 + s i n A = tan ( 4 π + 2 A )
1 + sin A cos A = sin 2 A 2 + cos 2 A 2 + 2 sin A 2 cos A 2 cos 2 A 2 − sin 2 A 2 \frac{1 + \sin A}{\cos A} = \frac{\sin^2\frac{A}{2} + \cos^2\frac{A}{2} + 2\sin\frac{A}{2}\cos
\frac{A}{2}}{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}} c o s A 1 + s i n A = c o s 2 2 A − s i n 2 2 A s i n 2 2 A + c o s 2 2 A + 2 s i n 2 A c o s 2 A
= sin A 2 + cos A 2 cos A 2 − sin A 2 = \frac{\sin\frac{A}{2} + \cos\frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}} = c o s 2 A − s i n 2 A s i n 2 A + c o s 2 A
Dividing numerator and denominator by cos A 2 , \cos \frac{A}{2}, cos 2 A , we get
= 1 + tan A 2 1 − tan A 2 = \frac{1 + \tan \frac{A}{2}}{1 - \tan \frac{A}{2}} = 1 − t a n 2 A 1 + t a n 2 A
We have to prove that cos 4 π 8 + cos 4 3 π 8 + cos 4 5 π 8 + cos 4 7 π 8 = 3 2 \cos^4\frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}=
\frac{3}{2} cos 4 8 π + cos 4 8 3 π + cos 4 8 5 π + cos 4 8 7 π = 2 3
cos 4 π 8 = ( cos 2 π 8 ) 2 = ( 1 + cos π 4 2 ) 2 \cos^4\frac{\pi}{8} = \left(\cos^2\frac{\pi}{8}\right)^2 = \left(\frac{1 + \cos\frac{\pi}{4}}{2}\right)^2 cos 4 8 π = ( cos 2 8 π ) 2 = ( 2 1 + c o s 4 π ) 2
= ( 1 + 1 2 2 ) 2 = 3 8 + 2 4 = \left(\frac{1 + \frac{1}{\sqrt{2}}}{2}\right)^2 = \frac{3}{8} + \frac{\sqrt{2}}{4} = ( 2 1 + 2 1 ) 2 = 8 3 + 4 2
Similalry, cos 4 3 π 8 = 3 8 − 2 4 \cos^4\frac{3\pi}{8} = \frac{3}{8} - \frac{\sqrt{2}}{4} cos 4 8 3 π = 8 3 − 4 2
cos 5 π 8 = cos ( π − 3 π 8 ) = − cos 3 π 8 \cos\frac{5\pi}{8} = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\frac{3\pi}{8} cos 8 5 π = cos ( π − 8 3 π ) = − cos 8 3 π
cos 7 π 8 = − cos π 8 \cos\frac{7\pi}{8} = -\cos\frac{\pi}{8} cos 8 7 π = − cos 8 π
Thus, cos 4 π 8 + cos 4 3 π 8 + cos 4 5 π 8 + cos 4 7 π 8 = 3 2 \cos^4\frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}=
\frac{3}{2} cos 4 8 π + cos 4 8 3 π + cos 4 8 5 π + cos 4 8 7 π = 2 3
We have to prove that 2 sin A − sin 2 A 2 sin A + sin 2 A = tan 2 A 2 \frac{2\sin A - \sin2A}{2\sin A + \sin 2A} = \tan^2\frac{A}{2} 2 s i n A + s i n 2 A 2 s i n A − s i n 2 A = tan 2 2 A
L.H.S. = 2 sin A − 2 sin A cos A 2 cos A + 2 sin A cos A = 2 sin A ( 1 − cos A ) 2 sin A ( 1 + cos A ) = \frac{2\sin A - 2\sin A\cos A}{2\cos A + 2\sin A\cos A} = \frac{2\sin A(1 - \cos A)}{2\sin A(1 + \cos A)} = 2 c o s A + 2 s i n A c o s A 2 s i n A − 2 s i n A c o s A = 2 s i n A ( 1 + c o s A ) 2 s i n A ( 1 − c o s A )
= 2 sin 2 A 2 2 cos 2 A 2 = tan 2 A 2 = = \frac{2\sin^2\frac{A}{2}}{2\cos^2\frac{A}{2}} = \tan^2\frac{A}{2} = = 2 c o s 2 2 A 2 s i n 2 2 A = tan 2 2 A = R.H.S.
We have to prove that cot A 2 − tan A 2 = 2 cot A \cot \frac{A}{2} - \tan \frac{A}{2} = 2\cot A cot 2 A − tan 2 A = 2 cot A
L.H.S. = cos A 2 sin A 2 − sin A 2 cos A 2 = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} - \frac{\sin \frac{A}{2}}{\cos\frac{A}{2}} = s i n 2 A c o s 2 A − c o s 2 A s i n 2 A
= cos 2 A 2 − sin 2 A 2 sin A 2 cos A 2 = \frac{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}{\sin \frac{A}{2}\cos\frac{A}{2}} = s i n 2 A c o s 2 A c o s 2 2 A − s i n 2 2 A
= 2 cos A sin A = 2 cot A = = \frac{2\cos A}{\sin A} = 2\cot A = = s i n A 2 c o s A = 2 cot A = R.H.S.
We have to prove that 1 + sin A 1 − sin A = tan 2 ( π 4 + A 2 ) \frac{1 + \sin A}{1 - \sin A} = \tan^2\left(\frac{\pi}{4} + \frac{A}{2}\right) 1 − s i n A 1 + s i n A = tan 2 ( 4 π + 2 A )
L.H.S. = cos 2 A 2 + sin 2 A 2 + 2 cos A 2 sin A 2 cos 2 A 2 + sin 2 A 2 − 2 cos A 2 sin A 2 = \frac{\cos^2\frac{A}{2} + \sin^2\frac{A}{2} + 2\cos \frac{A}{2}\sin\frac{A}{2}}{\cos^2\frac{A}{2} +
\sin^2\frac{A}{2} - 2\cos \frac{A}{2}\sin\frac{A}{2}} = c o s 2 2 A + s i n 2 2 A − 2 c o s 2 A s i n 2 A c o s 2 2 A + s i n 2 2 A + 2 c o s 2 A s i n 2 A
= cos A 2 + sin A 2 cos A 2 − sin A 2 = \frac{\cos \frac{A}{2} + \sin \frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}} = c o s 2 A − s i n 2 A c o s 2 A + s i n 2 A
Dividing both numerator and denominator by cos A 2 , \cos \frac{A}{2}, cos 2 A , we get
= 1 + tan A 2 1 − tan A 2 = tan π 4 + tan A 2 1 − tan π 4 tan A 2 = \frac{1 + \tan\frac{A}{2}}{1 - \tan \frac{A}{2}} = \frac{\tan\frac{\pi}{4} + \tan \frac{A}{2}}{1 -
\tan\frac{\pi}{4}\tan\frac{A}{2}} = 1 − t a n 2 A 1 + t a n 2 A = 1 − t a n 4 π t a n 2 A t a n 4 π + t a n 2 A
= tan ( π 4 + A 2 ) = = \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) = = tan ( 4 π + 2 A ) = R.H.S.
We have to prove that sec A + tan A = tan ( π 4 + A 2 ) \sec A + \tan A = \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) sec A + tan A = tan ( 4 π + 2 A )
L.H.S. = 1 + sin A cos A = ( cos A 2 + sin A 2 ) 2 cos 2 A 2 − sin 2 A 2 = \frac{1 + \sin A}{\cos A} = \frac{\left(\cos\frac{A}{2} + \sin\frac{A}{2}\right)^2}{\cos^2\frac{A}{2} -
\sin^2\frac{A}{2}} = c o s A 1 + s i n A = c o s 2 2 A − s i n 2 2 A ( c o s 2 A + s i n 2 A ) 2
= cos A 2 + sin A 2 cos A 2 − sin A 2 = \frac{\cos \frac{A}{2} + \sin \frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}} = c o s 2 A − s i n 2 A c o s 2 A + s i n 2 A
Now proceeding like previous problem
= tan ( π 4 + A 2 ) = = \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) = = tan ( 4 π + 2 A ) = R.H.S.
We have to prove that sin A + sin B − sin ( A + B ) sin A + sin B + sin ( A + B ) = tan A 2 tan B 2 \frac{\sin A + \sin B - \sin(A + B)}{\sin A + \sin B + \sin(A + B)} = \tan \frac{A}{2}\tan
\frac{B}{2} s i n A + s i n B + s i n ( A + B ) s i n A + s i n B − s i n ( A + B ) = tan 2 A tan 2 B
L.H.S. = 2 sin A + B 2 cos A − B 2 − 2 sin A + B 2 cos A + B 2 2 sin A + B 2 cos A − B 2 + 2 sin A + B 2 cos A + B 2 = \frac{2\sin\frac{A + B}{2}\cos\frac{A - B}{2} - 2\sin \frac{A + B}{2}\cos\frac{A + B}{2}}{2\sin\frac{A +
B}{2}\cos\frac{A - B}{2} + 2\sin \frac{A + B}{2}\cos\frac{A + B}{2}} = 2 s i n 2 A + B c o s 2 A − B + 2 s i n 2 A + B c o s 2 A + B 2 s i n 2 A + B c o s 2 A − B − 2 s i n 2 A + B c o s 2 A + B
= cos A − B 2 − cos A + B 2 cos A − B 2 + cos A + B 2 = \frac{\cos\frac{A - B}{2} - \cos \frac{A + B}{2}}{\cos\frac{A - B}{2} + \cos \frac{A + B}{2}} = c o s 2 A − B + c o s 2 A + B c o s 2 A − B − c o s 2 A + B
= 2 sin A 2 cos B 2 2 cos A 2 cos B 2 = \frac{2\sin\frac{A}{2}\cos\frac{B}{2}}{2\cos\frac{A}{2}\cos\frac{B}{2}} = 2 c o s 2 A c o s 2 B 2 s i n 2 A c o s 2 B
= tan A 2 tan B 2 = = \tan \frac{A}{2}\tan \frac{B}{2} = = tan 2 A tan 2 B = R.H.S.
We have to prove that tan ( π 4 − A 2 ) = sec A − tan A = 1 − sin A 1 + sin A \tan \left(\frac{\pi}{4} - \frac{A}{2}\right) = \sec A - \tan A = \sqrt{\frac{1 - \sin A}{1 +
\sin A}} tan ( 4 π − 2 A ) = sec A − tan A = 1 + s i n A 1 − s i n A
L.H.S. = tan ( π 4 − A 2 ) = 1 − tan A 2 1 + tan A 2 = \tan \left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{1 - \tan \frac{A}{2}}{1 + \tan \frac{A}{2}} = tan ( 4 π − 2 A ) = 1 + t a n 2 A 1 − t a n 2 A
= cos A 2 − sin A 2 cos A 2 + sin A 2 = \frac{\cos\frac{A}{2} - \sin \frac{A}{2}}{\cos\frac{A}{2} + \sin \frac{A}{2}} = c o s 2 A + s i n 2 A c o s 2 A − s i n 2 A
Multiplying both numerator and denominator by cos A 2 + sin A 2 \cos\frac{A}{2} + \sin\frac{A}{2} cos 2 A + sin 2 A
= cos A 1 + sin A = cos 2 A ( 1 + sin A ) 2 = 1 − sin A 1 + sin A = \frac{\cos A}{1 + \sin A} = \sqrt{\frac{\cos^2A}{(1 + \sin A)^2}} = \sqrt{\frac{1 - \sin A}{1 + \sin A}} = 1 + s i n A c o s A = ( 1 + s i n A ) 2 c o s 2 A = 1 + s i n A 1 − s i n A
Also, cos A 1 + sin A = cos A ( 1 − sin A ) 1 − sin 2 A = sec A − tan A \frac{\cos A}{1 + \sin A} = \frac{\cos A(1 - \sin A)}{1 - \sin^2A} = \sec A - \tan A 1 + s i n A c o s A = 1 − s i n 2 A c o s A ( 1 − s i n A ) = sec A − tan A
We have to prove that cosec ( π 4 + A 2 ) cosec ( π 4 − A 2 ) = 2 sec A \cosec\left(\frac{\pi}{4} + \frac{A}{2}\right)\cosec \left(\frac{\pi}{4} - \frac{A}{2}\right) =
2\sec A cosec ( 4 π + 2 A ) cosec ( 4 π − 2 A ) = 2 sec A
L.H.S. = 1 sin ( π 4 + A 2 ) . 1 sin ( π 4 − A 2 ) = \frac{1}{\sin\left(\frac{\pi}{4} + \frac{A}{2}\right)}.\frac{1}{\sin\left(\frac{\pi}{4} -
\frac{A}{2}\right)} = s i n ( 4 π + 2 A ) 1 . s i n ( 4 π − 2 A ) 1
= 2 cos A − cos π 2 = 2 sec A = = \frac{2}{\cos A - \cos \frac{\pi}{2}} = 2\sec A = = c o s A − c o s 2 π 2 = 2 sec A = R.H.S.
We have to prove that cos 2 π 8 + cos 2 3 π 8 + cos 2 5 π 8 + cos 2 7 π 8 = 2 \cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \cos^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8} = 2 cos 2 8 π + cos 2 8 3 π + cos 2 8 5 π + cos 2 8 7 π = 2
cos 2 π 8 = 1 + cos π 4 2 = 1 + 2 2 2 \cos^2\frac{\pi}{8} = \frac{1 + \cos \frac{\pi}{4}}{2} = \frac{1 + \sqrt{2}}{2\sqrt{2}} cos 2 8 π = 2 1 + c o s 4 π = 2 2 1 + 2
cos 2 3 π 8 = 1 + cos 3 π 4 2 = 2 − 1 2 2 \cos^2\frac{3\pi}{8} = \frac{1 + \cos \frac{3\pi}{4}}{2} = \frac{\sqrt{2} - 1}{2\sqrt{2}} cos 2 8 3 π = 2 1 + c o s 4 3 π = 2 2 2 − 1
cos 2 5 π 8 = cos 2 3 π 8 \cos^2\frac{5\pi}{8} = \cos^2\frac{3\pi}{8} cos 2 8 5 π = cos 2 8 3 π
cos 2 7 π 8 = cos 2 π 8 \cos^2\frac{7\pi}{8} = \cos^2\frac{\pi}{8} cos 2 8 7 π = cos 2 8 π
L.H.S. = 2 ( 1 + 2 2 2 + 2 − 1 2 2 ) = 2\left(\frac{1 + \sqrt{2}}{2\sqrt{2}} + \frac{\sqrt{2} - 1}{2\sqrt{2}}\right) = 2 ( 2 2 1 + 2 + 2 2 2 − 1 )
= 2 = = 2 = = 2 = R.H.S.
This problem is similar to previous problem and can be solved in a likewise manner.
We have to prove that ( 1 + cos π 8 ) ( 1 + cos 3 π 8 ) ( 1 + cos 5 π 8 ) ( 1 + cos 7 π 8 ) = 1 8 \left(1 + \cos \frac{\pi}{8}\right)\left(1 + \cos\frac{3\pi}{8}\right)\left(1 +
\cos\frac{5\pi}{8}\right)\left(1 + \cos \frac{7\pi}{8}\right) = \frac{1}{8} ( 1 + cos 8 π ) ( 1 + cos 8 3 π ) ( 1 + cos 8 5 π ) ( 1 + cos 8 7 π ) = 8 1
cos 7 π 8 = cos ( π − π 8 ) = − cos π 8 \cos\frac{7\pi}{8} = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\frac{\pi}{8} cos 8 7 π = cos ( π − 8 π ) = − cos 8 π
cos 5 π 8 = cos ( π − 3 π 8 ) = − cos 3 π 8 \cos\frac{5\pi}{8} = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\frac{3\pi}{8} cos 8 5 π = cos ( π − 8 3 π ) = − cos 8 3 π
L.H.S. = ( 1 − cos 2 π 8 ) ( 1 − cos 2 3 π 8 ) = \left(1 - \cos^2\frac{\pi}{8}\right)\left(1 - \cos^2\frac{3\pi}{8}\right) = ( 1 − cos 2 8 π ) ( 1 − cos 2 8 3 π )
= sin 2 π 8 sin 2 3 π 8 = \sin^2\frac{\pi}{8}\sin^2\frac{3\pi}{8} = sin 2 8 π sin 2 8 3 π
= 1 − 2 cos π 4 2 . 1 − 2 cos 3 π 4 2 = \frac{1 - 2\cos\frac{\pi}{4}}{2}.\frac{1 - 2\cos\frac{3\pi}{4}}{2} = 2 1 − 2 c o s 4 π . 2 1 − 2 c o s 4 3 π
Substituting values from 105 we get desired result.
We have to find the value of sin 23 π 24 \sin \frac{23\pi}{24} sin 24 23 π
sin ( π − π 24 ) = sin 1 5 ∘ 2 \sin \left(\pi - \frac{\pi}{24}\right) = \sin\frac{15^\circ}{2} sin ( π − 24 π ) = sin 2 1 5 ∘
sin 2 A = 1 2 ( 1 − cos 2 A ) = 1 2 ( 1 − cos 1 5 ∘ ) \sin^2A = \frac{1}{2}(1 - \cos 2A) = \frac{1}{2}(1 - \cos15^\circ) sin 2 A = 2 1 ( 1 − cos 2 A ) = 2 1 ( 1 − cos 1 5 ∘ )
= 1 2 ( 1 − 3 + 1 2 2 ) = \frac{1}{2}\left(1 - \frac{\sqrt{3} + 1}{2\sqrt{2}}\right) = 2 1 ( 1 − 2 2 3 + 1 )
∴ sin A = 1 4 8 − 2 6 − 2 2 \therefore \sin A = \frac{1}{4}\sqrt{8 - 2\sqrt{6} - 2\sqrt{2}} ∴ sin A = 4 1 8 − 2 6 − 2 2
Given A = 11 2 ∘ 3 0 ′ ∴ 2 A = 22 5 ∘ A = 112^\circ30'\therefore 2A = 225^\circ A = 11 2 ∘ 3 0 ′ ∴ 2 A = 22 5 ∘
cos 2 A = cos ( 18 0 ∘ + 4 5 ∘ ) = − 1 2 \cos 2A = \cos(180^\circ + 45^\circ) = -\frac{1}{\sqrt{2}} cos 2 A = cos ( 18 0 ∘ + 4 5 ∘ ) = − 2 1
∣ sin A ∣ = 1 − ( − 1 2 ) 2 = 2 + 2 2 |\sin A| = \sqrt{\frac{1 - \left(-\frac{1}{\sqrt{2}}\right)}{2}} = \sqrt{\frac{2 + \sqrt{2}}{2}} ∣ sin A ∣ = 2 1 − ( − 2 1 ) = 2 2 + 2
∵ \because ∵ A lies in 2nd quadrant ∴ sin A \therefore \sin A ∴ sin A will be positive and cos A \cos A cos A will be negative.
∣ cos A ∣ = − 2 − 2 2 |\cos A| = -\frac{\sqrt{2 - \sqrt{2}}}{2} ∣ cos A ∣ = − 2 2 − 2
We have to prove that sin 2 2 4 ∘ − sin 2 6 ∘ = 1 8 ( 5 − 1 ) \sin^224^\circ - \sin^26^\circ = \frac{1}{8}(\sqrt{5} - 1) sin 2 2 4 ∘ − sin 2 6 ∘ = 8 1 ( 5 − 1 )
L.H.S. = sin ( 2 4 ∘ + 6 ∘ ) sin ( 2 4 ∘ − 6 ∘ ) = 1 2 . 5 − 1 4 = \sin(24^\circ + 6^\circ)\sin(24^\circ - 6^\circ) = \frac{1}{2}.\frac{\sqrt{5} - 1}{4} = sin ( 2 4 ∘ + 6 ∘ ) sin ( 2 4 ∘ − 6 ∘ ) = 2 1 . 4 5 − 1
= 1 8 ( 5 − 1 ) = = \frac{1}{8}(\sqrt{5} - 1) = = 8 1 ( 5 − 1 ) = R.H.S.
We have to prove that tan 6 ∘ . tan 4 2 ∘ . tan 6 6 ∘ . tan 7 8 ∘ = 1 \tan6^\circ.\tan42^\circ.\tan66^\circ.\tan78^\circ = 1 tan 6 ∘ . tan 4 2 ∘ . tan 6 6 ∘ . tan 7 8 ∘ = 1
L.H.S. = sin 6 6 ∘ 6 ∘ cos 6 6 ∘ cos 6 ∘ . sin 7 8 ∘ sin 4 2 ∘ cos 7 8 ∘ cos 4 2 ∘ = \frac{\sin66^\circ6^\circ}{\cos66^\circ\cos6^\circ}.\frac{\sin78^\circ\sin42^\circ}{\cos78^\circ\cos42^\circ} = c o s 6 6 ∘ c o s 6 ∘ s i n 6 6 ∘ 6 ∘ . c o s 7 8 ∘ c o s 4 2 ∘ s i n 7 8 ∘ s i n 4 2 ∘
= cos 6 0 ∘ − cos 7 2 ∘ cos 6 0 ∘ + cos 7 2 ∘ . cos 3 6 ∘ − cos 12 0 ∘ cos 3 6 ∘ + cos 12 0 ∘ = \frac{\cos60^\circ - \cos72^\circ}{\cos60^\circ + \cos72^\circ}.\frac{\cos36^\circ - \cos120^\circ}{\cos36^\circ +
\cos120^\circ} = c o s 6 0 ∘ + c o s 7 2 ∘ c o s 6 0 ∘ − c o s 7 2 ∘ . c o s 3 6 ∘ + c o s 12 0 ∘ c o s 3 6 ∘ − c o s 12 0 ∘
= 1 − 2 sin 1 8 ∘ 1 + 2 sin 1 8 ∘ . 2 cos 3 6 ∘ + 1 2 cos 3 6 ∘ − 1 = \frac{1 - 2\sin18^\circ}{1 + 2\sin18^\circ}.\frac{2\cos36^\circ + 1}{2\cos36^\circ - 1} = 1 + 2 s i n 1 8 ∘ 1 − 2 s i n 1 8 ∘ . 2 c o s 3 6 ∘ − 1 2 c o s 3 6 ∘ + 1
= 1 − 2 ( 5 − 1 4 ) 1 + 2 ( 5 − 1 4 ) . 2. ( 5 + 1 4 ) + 1 2. ( 5 + 1 4 ) − 1 = \frac{1 - 2\left(\frac{\sqrt{5} - 1}{4}\right)}{1 + 2\left(\frac{\sqrt{5} -
1}{4}\right)}.\frac{2.\left(\frac{\sqrt{5} + 1}{4}\right) + 1}{2.\left(\frac{\sqrt{5} + 1}{4}\right) - 1} = 1 + 2 ( 4 5 − 1 ) 1 − 2 ( 4 5 − 1 ) . 2. ( 4 5 + 1 ) − 1 2. ( 4 5 + 1 ) + 1
= 1 = = 1 = = 1 = R.H.S.
We have to prove that sin 4 7 ∘ + sin 6 1 ∘ − sin 1 1 ∘ − sin 2 5 ∘ = cos 7 ∘ \sin47^\circ + \sin61^\circ - \sin 11^\circ - \sin25^\circ = \cos 7^\circ sin 4 7 ∘ + sin 6 1 ∘ − sin 1 1 ∘ − sin 2 5 ∘ = cos 7 ∘
L.H.S. = 2 sin 5 4 ∘ cos 7 ∘ − 2 sin 1 8 ∘ cos 7 ∘ = 2\sin54^\circ\cos7^\circ - 2\sin18^\circ\cos7^\circ = 2 sin 5 4 ∘ cos 7 ∘ − 2 sin 1 8 ∘ cos 7 ∘
= 2 cos 7 ∘ . 2 cos 3 6 ∘ . sin 1 8 ∘ = 2 cos 7 ∘ . 2 5 + 1 4 . 5 − 1 4 = 2\cos7^\circ.2\cos36^\circ.\sin18^\circ = 2\cos7^\circ.2\frac{\sqrt{5} + 1}{4}.\frac{\sqrt{5} - 1}{4} = 2 cos 7 ∘ .2 cos 3 6 ∘ . sin 1 8 ∘ = 2 cos 7 ∘ .2 4 5 + 1 . 4 5 − 1
= cos 7 ∘ = \cos7^\circ = cos 7 ∘
We have to prove that sin 1 2 ∘ sin 4 8 ∘ sin 5 4 ∘ = 1 8 \sin 12^\circ\sin48^\circ\sin54^\circ = \frac{1}{8} sin 1 2 ∘ sin 4 8 ∘ sin 5 4 ∘ = 8 1
L.H.S. = 1 2 . 2 sin 4 8 ∘ sin 1 2 ∘ . sin 5 4 ∘ = \frac{1}{2}.2\sin48^\circ\sin12^\circ.\sin54^\circ = 2 1 .2 sin 4 8 ∘ sin 1 2 ∘ . sin 5 4 ∘
= 1 2 ( cos 3 6 ∘ − cos 6 0 ∘ ) . cos 3 6 ∘ = \frac{1}{2}(\cos 36^\circ - \cos60^\circ).\cos36^\circ = 2 1 ( cos 3 6 ∘ − cos 6 0 ∘ ) . cos 3 6 ∘
= 1 2 ( 5 + 1 4 − 1 2 ) . 5 + 1 4 = \frac{1}{2}\left(\frac{\sqrt{5} + 1}{4} - \frac{1}{2}\right).\frac{\sqrt{5} + 1}{4} = 2 1 ( 4 5 + 1 − 2 1 ) . 4 5 + 1
= 1 8 = = \frac{1}{8} = = 8 1 = R.H.S.
We have to prove that cot 142 1 2 ∘ = 2 + 3 − 2 − 6 \cot 142\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3} - 2 - \sqrt{6} cot 142 2 1 ∘ = 2 + 3 − 2 − 6
L.H.S. cos 142 1 2 ∘ = cot ( 18 0 ∘ − 37 1 2 ∘ ) = − cot 37 1 2 ∘ \cos 142\frac{1}{2}^\circ = \cot\left(180^\circ - 37\frac{1}{2}^\circ\right) = -\cot37\frac{1}{2}^\circ cos 142 2 1 ∘ = cot ( 18 0 ∘ − 37 2 1 ∘ ) = − cot 37 2 1 ∘
We know that tan 1 5 ∘ = cot 7 5 ∘ = 3 − 1 3 + 1 \tan 15^\circ = \cot 75^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} tan 1 5 ∘ = cot 7 5 ∘ = 3 + 1 3 − 1
∴ − cot 37 1 2 ∘ = 2 + 3 − 2 − 6 = \therefore -\cot37\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3} - 2 - \sqrt{6} = ∴ − cot 37 2 1 ∘ = 2 + 3 − 2 − 6 = R.H.S.
We have to prove that sin 2 4 8 ∘ − cos 2 1 2 ∘ = − 5 + 1 8 \sin^248^\circ - \cos^212^\circ = -\frac{\sqrt{5} + 1}{8} sin 2 4 8 ∘ − cos 2 1 2 ∘ = − 8 5 + 1
L.H.S. = 1 2 ( 2 sin 2 4 8 ∘ − 2 cos 2 1 2 ∘ ) = \frac{1}{2}\left(2\sin^248^\circ - 2\cos^212^\circ\right) = 2 1 ( 2 sin 2 4 8 ∘ − 2 cos 2 1 2 ∘ )
= 1 2 ( 1 − cos 9 6 ∘ − 1 − cos 2 4 ∘ ) = \frac{1}{2}\left(1 - \cos96^\circ - 1 - \cos24^\circ\right) = 2 1 ( 1 − cos 9 6 ∘ − 1 − cos 2 4 ∘ )
= − 1 2 ( 2 cos 6 0 ∘ cos 3 6 ∘ ) = -\frac{1}{2}\left(2\cos60^\circ\cos36^\circ\right) = − 2 1 ( 2 cos 6 0 ∘ cos 3 6 ∘ )
= − 1 2 . 5 + 1 4 = − 5 + 1 8 = = -\frac{1}{2}.\frac{\sqrt{5} + 1}{4} = -\frac{\sqrt{5} + 1}{8} = = − 2 1 . 4 5 + 1 = − 8 5 + 1 = R.H.S.
We have to prove that 4 ( sin 2 4 ∘ + cos 6 ∘ ) = 3 + 15 4(\sin 24^\circ + \cos6^\circ) = \sqrt{3} + \sqrt{15} 4 ( sin 2 4 ∘ + cos 6 ∘ ) = 3 + 15
L.H.S. = 4 ( sin 2 4 ∘ + sin 8 4 ∘ ) = 8 sin 5 4 ∘ cos 3 0 ∘ = 4 3 sin 5 4 ∘ = 4(\sin24^\circ + \sin84^\circ) = 8\sin54^\circ\cos30^\circ = 4\sqrt{3}\sin54^\circ = 4 ( sin 2 4 ∘ + sin 8 4 ∘ ) = 8 sin 5 4 ∘ cos 3 0 ∘ = 4 3 sin 5 4 ∘
= 4 3 ( 3 sin 1 8 ∘ − 4 sin 3 1 8 ∘ ) = 4\sqrt{3}(3\sin18^\circ - 4\sin^318^\circ) = 4 3 ( 3 sin 1 8 ∘ − 4 sin 3 1 8 ∘ )
We know that sin 1 8 ∘ = 5 − 1 4 \sin 18^\circ = \frac{\sqrt{5} - 1}{4} sin 1 8 ∘ = 4 5 − 1
∴ 4 3 ( 3 sin 1 8 ∘ − 4 sin 3 1 8 ∘ ) = 3 + 15 = \therefore 4\sqrt{3}(3\sin18^\circ - 4\sin^318^\circ) = \sqrt{3} + \sqrt{15} = ∴ 4 3 ( 3 sin 1 8 ∘ − 4 sin 3 1 8 ∘ ) = 3 + 15 = R.H.S.
We have to prove that cot 6 ∘ cot 4 2 ∘ cot 6 6 ∘ cot 7 8 ∘ = 1 \cot6^\circ\cot42^\circ\cot66^\circ\cot78^\circ = 1 cot 6 ∘ cot 4 2 ∘ cot 6 6 ∘ cot 7 8 ∘ = 1
L.H.S. = 1 tan 6 ∘ tan 4 2 ∘ tan 6 6 ∘ tan 7 8 ∘ = \frac{1}{\tan6^\circ\tan42^\circ\tan66^\circ\tan78^\circ} = t a n 6 ∘ t a n 4 2 ∘ t a n 6 6 ∘ t a n 7 8 ∘ 1
We know that tan ( 6 0 ∘ − x ) tan x tan ( 6 0 ∘ + x ) = tan 3 x \tan(60^\circ - x)\tan x\tan(60^\circ + x) = \tan 3x tan ( 6 0 ∘ − x ) tan x tan ( 6 0 ∘ + x ) = tan 3 x
Putting x = 1 8 ∘ , x=18^\circ, x = 1 8 ∘ , we get
tan 4 2 ∘ tan 1 8 ∘ tan 7 8 ∘ = tan 5 4 ∘ \tan42^\circ\tan18^\circ\tan78^\circ = \tan54^\circ tan 4 2 ∘ tan 1 8 ∘ tan 7 8 ∘ = tan 5 4 ∘
Putting x = 6 ∘ , x=6^\circ, x = 6 ∘ , we get
tan 5 4 ∘ tan 6 ∘ tan 6 6 ∘ = tan 1 8 ∘ \tan54^\circ\tan6^\circ\tan66^\circ = \tan18^\circ tan 5 4 ∘ tan 6 ∘ tan 6 6 ∘ = tan 1 8 ∘
From these two, we derive that
tan 6 ∘ tan 4 2 ∘ tan 6 6 ∘ tan 7 8 ∘ = 1 \tan6^\circ\tan42^\circ\tan66^\circ\tan78^\circ = 1 tan 6 ∘ tan 4 2 ∘ tan 6 6 ∘ tan 7 8 ∘ = 1
We have to prove that tan 1 2 ∘ tan 2 4 ∘ tan 4 8 ∘ tan 8 4 ∘ = 1 \tan12^\circ\tan24^\circ\tan48^\circ\tan84^\circ = 1 tan 1 2 ∘ tan 2 4 ∘ tan 4 8 ∘ tan 8 4 ∘ = 1
We know that tan ( 6 0 ∘ − x ) tan x tan ( 6 0 ∘ + x ) = tan 3 x \tan(60^\circ - x)\tan x\tan(60^\circ + x) = \tan 3x tan ( 6 0 ∘ − x ) tan x tan ( 6 0 ∘ + x ) = tan 3 x
Putting x = 1 2 ∘ , x= 12^\circ, x = 1 2 ∘ , we get
tan 4 8 ∘ tan 1 2 ∘ tan 7 2 ∘ = tan 3 6 ∘ \tan48^\circ\tan 12^\circ\tan72^\circ = \tan 36^\circ tan 4 8 ∘ tan 1 2 ∘ tan 7 2 ∘ = tan 3 6 ∘
Putthing x = 2 4 ∘ , x = 24^\circ, x = 2 4 ∘ , we get
tan 3 6 ∘ tan 2 4 ∘ tan 8 4 ∘ = tan 7 2 ∘ \tan36^\circ\tan24^\circ\tan84^\circ = \tan72^\circ tan 3 6 ∘ tan 2 4 ∘ tan 8 4 ∘ = tan 7 2 ∘
From these two, we derive that
tan 1 2 ∘ tan 2 4 ∘ tan 4 8 ∘ tan 8 4 ∘ = 1 \tan12^\circ\tan24^\circ\tan48^\circ\tan84^\circ = 1 tan 1 2 ∘ tan 2 4 ∘ tan 4 8 ∘ tan 8 4 ∘ = 1
We have to prove that sin 6 ∘ sin 4 2 ∘ sin 6 6 ∘ sin 7 8 ∘ = 1 16 \sin6^\circ\sin42^\circ\sin66^\circ\sin78^\circ = \frac{1}{16} sin 6 ∘ sin 4 2 ∘ sin 6 6 ∘ sin 7 8 ∘ = 16 1
L.H.S. = sin 6 ∘ sin 6 6 ∘ sin 4 2 ∘ sin 7 8 ∘ = \sin6^\circ\sin66^\circ\sin42^\circ\sin78^\circ = sin 6 ∘ sin 6 6 ∘ sin 4 2 ∘ sin 7 8 ∘
= 1 4 ( cos 6 0 ∘ − cos 7 2 ∘ ) ( cos 3 6 ∘ − cos 12 0 ∘ ) = \frac{1}{4}(\cos60^\circ - \cos72^\circ)(\cos 36^\circ - \cos120^\circ) = 4 1 ( cos 6 0 ∘ − cos 7 2 ∘ ) ( cos 3 6 ∘ − cos 12 0 ∘ )
= 1 4 ( 1 2 − cos 7 2 ∘ ) ( cos 3 6 ∘ + 1 2 ) = \frac{1}{4}\left(\frac{1}{2} - \cos72^\circ\right)\left(\cos36^\circ + \frac{1}{2}\right) = 4 1 ( 2 1 − cos 7 2 ∘ ) ( cos 3 6 ∘ + 2 1 )
= 1 16 ( 1 − 2 cos 7 2 ∘ ) ( 2 cos 3 6 ∘ + 1 ) = \frac{1}{16}(1 - 2\cos72^\circ)(2\cos36^\circ + 1) = 16 1 ( 1 − 2 cos 7 2 ∘ ) ( 2 cos 3 6 ∘ + 1 )
= 1 16 [ 1 + 2 cos 3 6 ∘ − 2 cos 7 2 ∘ − 4 cos 3 6 ∘ cos 7 2 ∘ ] = \frac{1}{16}[1 + 2\cos36^\circ - 2\cos72^\circ - 4\cos36^\circ\cos72^\circ] = 16 1 [ 1 + 2 cos 3 6 ∘ − 2 cos 7 2 ∘ − 4 cos 3 6 ∘ cos 7 2 ∘ ]
= 1 16 + 1 8 [ cos 3 6 ∘ − cos 7 2 ∘ − cos 10 8 ∘ − cos 3 6 ∘ ] = \frac{1}{16} + \frac{1}{8}[\cos36^\circ - \cos72^\circ - \cos 108^\circ - \cos36^\circ] = 16 1 + 8 1 [ cos 3 6 ∘ − cos 7 2 ∘ − cos 10 8 ∘ − cos 3 6 ∘ ]
= 1 16 + 1 8 [ cos 7 2 ∘ + ∘ 10 8 ∘ ] = \frac{1}{16} + \frac{1}{8}[\cos72^\circ + \circ108^\circ] = 16 1 + 8 1 [ cos 7 2 ∘ + ∘ 10 8 ∘ ]
= 1 16 + 1 8 [ cos 7 2 ∘ + cos ( 18 0 ∘ − 7 2 ∘ ) ] = \frac{1}{16} + \frac{1}{8}[\cos72^\circ + \cos(180^\circ - 72^\circ)] = 16 1 + 8 1 [ cos 7 2 ∘ + cos ( 18 0 ∘ − 7 2 ∘ )]
= 1 16 = \frac{1}{16} = 16 1
We have to prove that sin π 5 sin 2 π 5 sin 3 π 5 sin 4 π 5 = 5 16 \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16} sin 5 π sin 5 2 π sin 5 3 π sin 5 4 π = 16 5
L.H.S. = sin π 5 sin 2 π 5 sin ( π − 2 π 5 ) sin ( π − π 5 ) = \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\left(\pi - \frac{2\pi}{5}\right)\sin\left(\pi - \frac{\pi}{5}\right) = sin 5 π sin 5 2 π sin ( π − 5 2 π ) sin ( π − 5 π )
= sin 2 π 5 sin 2 2 π 5 = sin 2 1 8 ∘ sin 2 3 6 ∘ = ( 5 − 1 4 ) 2 ( 1 4 10 − 2 5 ) 2 = \sin^2\frac{\pi}{5}\sin^2\frac{2\pi}{5} = \sin^218^\circ\sin^236^\circ = \left(\frac{\sqrt{5} -
1}{4}\right)^2\left(\frac{1}{4}\sqrt{10 - 2\sqrt{5}}\right)^2 = sin 2 5 π sin 2 5 2 π = sin 2 1 8 ∘ sin 2 3 6 ∘ = ( 4 5 − 1 ) 2 ( 4 1 10 − 2 5 ) 2
= 5 16 = = \frac{5}{16} = = 16 5 = R.H.S.
We have to prove that cos 3 6 ∘ cos 7 2 ∘ cos 10 8 ∘ cos 14 4 ∘ = 1 16 \cos36^\circ\cos72^\circ\cos108^\circ\cos144^\circ = \frac{1}{16} cos 3 6 ∘ cos 7 2 ∘ cos 10 8 ∘ cos 14 4 ∘ = 16 1
L.H.S. = cos 3 6 ∘ cos 7 2 ∘ cos ( 18 0 ∘ − 7 2 ∘ ) cos ( 18 0 ∘ − 3 6 ∘ ) = \cos36^\circ\cos72^\circ\cos(180^\circ - 72^\circ)\cos(180^\circ - 36^\circ) = cos 3 6 ∘ cos 7 2 ∘ cos ( 18 0 ∘ − 7 2 ∘ ) cos ( 18 0 ∘ − 3 6 ∘ )
= cos 2 3 6 ∘ cos 2 7 2 ∘ = \cos^236^\circ\cos^272^\circ = cos 2 3 6 ∘ cos 2 7 2 ∘
cos 3 6 ∘ = 5 + 1 4 , cos 7 2 ∘ = 2 cos 2 3 6 ∘ − 1 \cos 36^\circ = \frac{\sqrt{5} + 1}{4}, \cos72^\circ = 2\cos^236^\circ - 1 cos 3 6 ∘ = 4 5 + 1 , cos 7 2 ∘ = 2 cos 2 3 6 ∘ − 1
Thus, cos 2 3 6 ∘ cos 2 7 2 ∘ = 1 16 \cos^236^\circ\cos^272^\circ = \frac{1}{16} cos 2 3 6 ∘ cos 2 7 2 ∘ = 16 1
We have to prove that
cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 = 1 2 7 \cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{2^7} cos 15 π cos 15 2 π cos 15 3 π cos 15 4 π cos 15 5 π cos 15 6 π cos 15 7 π = 2 7 1
L.H.S. = 1 2 sin π 15 2 sin π 15 cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 =
\frac{1}{2\sin\frac{\pi}{15}}2\sin\frac{\pi}{15}\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = 2 s i n 15 π 1 2 sin 15 π cos 15 π cos 15 2 π cos 15 3 π cos 15 4 π cos 15 5 π cos 15 6 π cos 15 7 π
= 1 2 sin π 15 sin 2 π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 =
\frac{1}{2\sin\frac{\pi}{15}}\sin\frac{2\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = 2 s i n 15 π 1 sin 15 2 π cos 15 2 π cos 15 3 π cos 15 4 π cos 15 5 π cos 15 6 π cos 15 7 π
= 1 2 2 sin π 15 sin 4 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 = \frac{1}{2^2\sin\frac{\pi}{15}}\sin\frac{4\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = 2 2 s i n 15 π 1 sin 15 4 π cos 15 3 π cos 15 4 π cos 15 5 π cos 15 6 π cos 15 7 π
= 1 2 3 sin π 15 sin 8 π 15 cos 3 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 =
\frac{1}{2^3\sin\frac{\pi}{15}}\sin\frac{8\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = 2 3 s i n 15 π 1 sin 15 8 π cos 15 3 π cos 15 5 π cos 15 6 π cos 15 7 π
Now, sin 8 π 15 = sin ( π − 7 π 15 ) = sin 7 π 15 , \sin\frac{8\pi}{15} = \sin\left(\pi - \frac{7\pi}{15}\right) = \sin\frac{7\pi}{15}, sin 15 8 π = sin ( π − 15 7 π ) = sin 15 7 π , therefore
= 1 2 4 sin π 15 2 sin 7 π 15 cos 3 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 =
\frac{1}{2^4\sin\frac{\pi}{15}}2\sin\frac{7\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = 2 4 s i n 15 π 1 2 sin 15 7 π cos 15 3 π cos 15 5 π cos 15 6 π cos 15 7 π
= 1 2 4 sin π 15 sin 14 π 15 cos 3 π 15 cos 5 π 15 cos 6 π 15 = \frac{1}{2^4\sin\frac{\pi}{15}}\sin\frac{14\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15} = 2 4 s i n 15 π 1 sin 15 14 π cos 15 3 π cos 15 5 π cos 15 6 π
Now sin 14 π 15 = sin ( π − π 15 ) = sin π 15 , \sin\frac{14\pi}{15} = \sin\left(\pi - \frac{\pi}{15}\right) = \sin\frac{\pi}{15}, sin 15 14 π = sin ( π − 15 π ) = sin 15 π , therefore
= 1 2 4 cos 3 π 15 cos 5 π 15 cos 6 π 15 = \frac{1}{2^4}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15} = 2 4 1 cos 15 3 π cos 15 5 π cos 15 6 π
= 1 2 5 sin 3 π 15 2 sin 3 π 15 cos 3 π 15 cos 5 π 15 cos 6 π 15 = \frac{1}{2^5\sin\frac{3\pi}{15}}2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15} = 2 5 s i n 15 3 π 1 2 sin 15 3 π cos 15 3 π cos 15 5 π cos 15 6 π
= 1 2 6 sin 3 π 15 2 sin 6 π 15 cos 6 π 15 cos π 3 = \frac{1}{2^6\sin\frac{3\pi}{15}}2\sin\frac{6\pi}{15}\cos\frac{6\pi}{15}\cos\frac{\pi}{3} = 2 6 s i n 15 3 π 1 2 sin 15 6 π cos 15 6 π cos 3 π
= 1 2 6 sin 3 π 15 sin 12 π 15 cos π 3 = \frac{1}{2^6\sin\frac{3\pi}{15}}\sin\frac{12\pi}{15}\cos\frac{\pi}{3} = 2 6 s i n 15 3 π 1 sin 15 12 π cos 3 π
Similarly sin 12 π 15 = sin 3 π 15 \sin\frac{12\pi}{15} = \sin \frac{3\pi}{15} sin 15 12 π = sin 15 3 π
= 1 2 6 cos π 3 = 1 2 7 = = \frac{1}{2^6}\cos\frac{\pi}{3} = \frac{1}{2^7} = = 2 6 1 cos 3 π = 2 7 1 = R.H.S.
We have to prove that
cos π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 = 1 64 \cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} =
\frac{1}{64} cos 65 π cos 65 2 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π = 64 1
= 1 2 sin π 65 2 sin π 65 cos π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 =
\frac{1}{2\sin\frac{\pi}{65}}2\sin\frac{\pi}{65}\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = 2 s i n 65 π 1 2 sin 65 π cos 65 π cos 65 2 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π
= 1 2 sin π 65 sin 2 π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 =
\frac{1}{2\sin\frac{\pi}{65}}\sin\frac{2\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = 2 s i n 65 π 1 sin 65 2 π cos 65 2 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π
= 1 2 2 sin π 65 2 sin 2 π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 =
\frac{1}{2^2\sin\frac{\pi}{65}}2\sin\frac{2\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = 2 2 s i n 65 π 1 2 sin 65 2 π cos 65 2 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π
= 1 2 2 sin π 65 sin 4 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 =
\frac{1}{2^2\sin\frac{\pi}{65}}\sin\frac{4\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = 2 2 s i n 65 π 1 sin 65 4 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π
= 1 2 3 sin π 65 2 sin 4 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 =
\frac{1}{2^3\sin\frac{\pi}{65}}2\sin\frac{4\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = 2 3 s i n 65 π 1 2 sin 65 4 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π
Proceeding similalry we find that above is equal to
1 2 7 sin π 65 sin 64 π 65 \frac{1}{2^7\sin\frac{\pi}{65}}\sin\frac{64\pi}{65} 2 7 s i n 65 π 1 sin 65 64 π
However, sin 64 π 65 = sin π 65 , \sin\frac{64\pi}{65} = \sin\frac{\pi}{65}, sin 65 64 π = sin 65 π , therefore
cos π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 = 1 64 \cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} =
\frac{1}{64} cos 65 π cos 65 2 π cos 65 4 π cos 65 8 π cos 65 16 π cos 65 32 π = 64 1
Given, tan A 2 = a − b a + b tan B 2 \tan \frac{A}{2} = \sqrt{\frac{a - b}{a + b}}\tan \frac{B}{2} tan 2 A = a + b a − b tan 2 B
Now, cos A = 1 − tan 2 A 2 1 + tan 2 A 2 = 1 − a − b a + b tan 2 B 2 1 + a − b a + b tan 2 B 2 \cos A = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}} = \frac{1 - \frac{a - b}{a + b}\tan^2\frac{B}{2}}{1 +
\frac{a - b}{a + b}\tan^2\frac{B}{2}} cos A = 1 + t a n 2 2 A 1 − t a n 2 2 A = 1 + a + b a − b t a n 2 2 B 1 − a + b a − b t a n 2 2 B
= ( a + b ) cos 2 B 2 − ( a − b ) sin 2 B 2 ( a + b ) cos 2 B 2 + ( a − b ) sin 2 B 2 = \frac{(a + b)\cos^2\frac{B}{2} - (a - b)\sin^2\frac{B}{2}}{(a + b)\cos^2\frac{B}{2} + (a - b)\sin^2\frac{B}{2}} = ( a + b ) c o s 2 2 B + ( a − b ) s i n 2 2 B ( a + b ) c o s 2 2 B − ( a − b ) s i n 2 2 B
= a cos B + b a + b cos B = \frac{a\cos B + b}{a + b\cos B} = a + b c o s B a c o s B + b
This problem is similar to previous problem with a = 1 , e = b a = 1, e = b a = 1 , e = b and has been left as an exercise.
Given sin A + sin B = a \sin A + \sin B = a sin A + sin B = a and cos A + cos B = b , \cos A + \cos B = b, cos A + cos B = b , we have to prove that sin ( A + B ) = 2 a b a 2 + b 2 \sin(A + B) = \frac{2ab}{a^2 +
b^2} sin ( A + B ) = a 2 + b 2 2 ab
2 a b = 2 ( sin A + sin B ) ( cos A + cos B ) = 2 sin A cos A + 2 sin A cos B + 2 sin B cos A + 2 sin B cos B = sin 2 A + sin 2 B + 2 sin ( A + B ) 2ab = 2(\sin A + \sin B)(\cos A + \cos B) = 2\sin A\cos A + 2\sin A\cos B + 2\sin B\cos A + 2\sin B\cos B = \sin 2A +
\sin 2B + 2\sin(A + B) 2 ab = 2 ( sin A + sin B ) ( cos A + cos B ) = 2 sin A cos A + 2 sin A cos B + 2 sin B cos A + 2 sin B cos B = sin 2 A + sin 2 B + 2 sin ( A + B )
= 2 sin ( A + B ) [ cos ( B − A ) + 1 ] = 2\sin(A + B)[\cos(B - A) + 1] = 2 sin ( A + B ) [ cos ( B − A ) + 1 ]
a 2 + b 2 = sin 2 A + sin 2 B + 2 sin A sin B + cos 2 A + cos 2 B + 2 cos A cos B a^2 + b^2 = \sin^2A + \sin^2B + 2\sin A\sin B + \cos^2A + \cos^2B + 2\cos A\cos B a 2 + b 2 = sin 2 A + sin 2 B + 2 sin A sin B + cos 2 A + cos 2 B + 2 cos A cos B
= 2 + 2 cos ( B − A ) = 2 + 2\cos(B - A) = 2 + 2 cos ( B − A )
∴ sin ( A + B ) = 2 a b a 2 + b 2 \therefore \sin(A + B) = \frac{2ab}{a^2 + b^2} ∴ sin ( A + B ) = a 2 + b 2 2 ab
Given sin A + sin B = a \sin A + \sin B = a sin A + sin B = a and cos A + cos B = b , \cos A + \cos B = b, cos A + cos B = b , we have to prove that cos ( A − B ) = 1 2 ( a 2 + b 2 − 2 ) \cos(A - B) =
\frac{1}{2}(a^2 + b^2 - 2) cos ( A − B ) = 2 1 ( a 2 + b 2 − 2 )
From previous problem, 2 cos ( B − A ) = a 2 + b 2 − 2 ⇒ cos ( A − B ) = 1 2 ( a 2 + b 2 − 2 ) 2\cos(B - A) = a^2 + b^2 - 2 \Rightarrow \cos(A - B) = \frac{1}{2}(a^2 + b^2 - 2) 2 cos ( B − A ) = a 2 + b 2 − 2 ⇒ cos ( A − B ) = 2 1 ( a 2 + b 2 − 2 )
Let us solve these one by one.
Given A A A and B B B be two different roots of equation a cos θ + b sin θ = c a\cos\theta + b\sin\theta = c a cos θ + b sin θ = c
a cos A + b sin A = c a\cos A + b\sin A = c a cos A + b sin A = c and a cos B + b sin B = c a\cos B + b\sin B = c a cos B + b sin B = c
⇒ a ( cos A − cos B ) + b ( sin A − sin B ) = 0 \Rightarrow a(\cos A - \cos B) + b(\sin A - \sin B) = 0 ⇒ a ( cos A − cos B ) + b ( sin A − sin B ) = 0
b ( sin A − sin B ) = a ( cos A − cos B ) b(\sin A - \sin B) = a(\cos A - \cos B) b ( sin A − sin B ) = a ( cos A − cos B )
b . 2 cos A + B 2 sin A − B 2 = a . 2 sin A + B 2 sin A − B 2 b.2\cos\frac{A + B}{2}\sin\frac{A - B}{2} = a.2\sin\frac{A + B}{2}\sin \frac{A - B}{2} b .2 cos 2 A + B sin 2 A − B = a .2 sin 2 A + B sin 2 A − B
⇒ tan A + B 2 = b a \Rightarrow \tan\frac{A + B}{2} = \frac{b}{a} ⇒ tan 2 A + B = a b
tan A + B = 2 tan A + B 2 1 − tan 2 A + B 2 = 2 a b a 2 + b 2 \tan{A + B} = \frac{2\tan\frac{A + B}{2}}{1 - \tan^2\frac{A + B}{2}} = \frac{2ab}{a^2 + b^2} tan A + B = 1 − t a n 2 2 A + B 2 t a n 2 A + B = a 2 + b 2 2 ab
We have tan ( A + B ) = 2 a b a 2 + b 2 \tan(A + B) = \frac{2ab}{a^2 + b^2} tan ( A + B ) = a 2 + b 2 2 ab
∴ cos ( A + B ) = a 2 − b 2 a 2 + b 2 \therefore \cos(A + B) = \frac{a^2 - b^2}{a^2 + b^2} ∴ cos ( A + B ) = a 2 + b 2 a 2 − b 2
Given cos A + cos B = 1 3 \cos A + \cos B = \frac{1}{3} cos A + cos B = 3 1 and sin A + sin B = 1 4 , \sin A + \sin B = \frac{1}{4}, sin A + sin B = 4 1 , we have to prove that cos A − B 2 = ± 5 24 \cos
\frac{A - B}{2} = \pm\frac{5}{24} cos 2 A − B = ± 24 5
Squaring and adding ( cos 2 A + sin 2 A ) + ( cos 2 B + sin B ) + 2 ( cos A cos B + sin A sin B ) = 1 9 + 1 16 (\cos^2A + \sin^2A) + (\cos^2B + \sin^B) + 2(\cos A\cos B + \sin A\sin B) = \frac{1}{9} +
\frac{1}{16} ( cos 2 A + sin 2 A ) + ( cos 2 B + sin B ) + 2 ( cos A cos B + sin A sin B ) = 9 1 + 16 1
2 + 2 cos ( A − B ) = 25 144 2 + 2\cos(A - B) = \frac{25}{144} 2 + 2 cos ( A − B ) = 144 25
4 cos 2 A − B 2 = 25 144 ⇒ cos A − B 2 = ± 5 24 4\cos^2\frac{A - B}{2} = \frac{25}{144} \Rightarrow \cos\frac{A - B}{2} = \pm\frac{5}{24} 4 cos 2 2 A − B = 144 25 ⇒ cos 2 A − B = ± 24 5
Given 2 tan A 2 = tan B 2 , 2\tan \frac{A}{2} = \tan \frac{B}{2}, 2 tan 2 A = tan 2 B , we have to prove that cos A = 3 + 5 cos B 5 + 3 cos B \cos A = \frac{3 + 5\cos B}{5 + 3\cos B} cos A = 5 + 3 c o s B 3 + 5 c o s B
tan A 2 = 1 2 tan B 2 \tan\frac{A}{2} = \frac{1}{2}\tan\frac{B}{2} tan 2 A = 2 1 tan 2 B
cos A = 1 − tan 2 A 2 1 + tan 2 A 2 = 1 − tan 2 B 2 4 1 + tan 2 B 2 4 \cos A = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}} = \frac{1 - \frac{\tan^2\frac{B}{2}}{4}}{1 +
\frac{\tan^2\frac{B}{2}}{4}} cos A = 1 + t a n 2 2 A 1 − t a n 2 2 A = 1 + 4 t a n 2 2 B 1 − 4 t a n 2 2 B
= 4 − tan 2 B 2 4 + tan 2 B 2 = 3 + 5. 1 − tan 2 B 2 1 + tan 2 B 2 5 + 3 1 − tan 2 B 2 1 + tan 2 B 2 = \frac{4 - \tan^2\frac{B}{2}}{4 + \tan^2\frac{B}{2}} = \frac{3 + 5.\frac{1 - \tan^2\frac{B}{2}}{1 +
\tan^2\frac{B}{2}}}{5 + 3\frac{1 - \tan^2\frac{B}{2}}{1 + \tan^2\frac{B}{2}}} = 4 + t a n 2 2 B 4 − t a n 2 2 B = 5 + 3 1 + t a n 2 2 B 1 − t a n 2 2 B 3 + 5. 1 + t a n 2 2 B 1 − t a n 2 2 B
= 3 + 5 cos B 5 + 3 cos B = = \frac{3 + 5\cos B}{5 + 3\cos B} = = 5 + 3 c o s B 3 + 5 c o s B = R.H.S.
Given sin A = 4 5 \sin A = \frac{4}{5} sin A = 5 4 and cos B = 5 13 , \cos B = \frac{5}{13}, cos B = 13 5 , we have to prove that one value of cos A − B 2 = 8 65 \cos \frac{A -
B}{2} = \frac{8}{\sqrt{65}} cos 2 A − B = 65 8
cos A = 3 5 \cos A = \frac{3}{5} cos A = 5 3 and sin B = 12 13 \sin B = \frac{12}{13} sin B = 13 12
cos 2 A − B 2 = 1 + cos ( A − B ) 2 \cos^2\frac{A - B}{2} = \frac{1 + \cos(A - B)}{2} cos 2 2 A − B = 2 1 + c o s ( A − B )
cos ( A − B ) = cos A cos B + sin A sin B = 15 65 + 48 65 = 63 65 \cos(A - B) = \cos A\cos B + \sin A\sin B = \frac{15}{65} + \frac{48}{65} = \frac{63}{65} cos ( A − B ) = cos A cos B + sin A sin B = 65 15 + 65 48 = 65 63
1 + cos ( A − B ) 2 = 128 2.65 \frac{1 + \cos(A - B)}{2} = \frac{128}{2.65} 2 1 + c o s ( A − B ) = 2.65 128
cos A − B 2 = ± 8 65 \cos\frac{A - B}{2} = \pm\frac{8}{\sqrt{65}} cos 2 A − B = ± 65 8
Given, sec ( A + B ) + sec ( A − B ) = 2 sec A , \sec(A + B) + \sec(A - B) = 2\sec A, sec ( A + B ) + sec ( A − B ) = 2 sec A , we have to prove that cos B = ± 2 cos B 2 \cos B = \pm \sqrt{2}\cos \frac{B}{2} cos B = ± 2 cos 2 B
L.H.S. = 1 cos ( A + B ) + 1 cos ( A − B ) = cos ( A − B ) + cos ( A + B ) cos ( A − B ) cos ( A + B ) = \frac{1}{\cos(A + B)} + \frac{1}{\cos(A - B)} = \frac{\cos(A - B) + \cos (A + B)}{\cos(A - B)\cos(A + B)} = c o s ( A + B ) 1 + c o s ( A − B ) 1 = c o s ( A − B ) c o s ( A + B ) c o s ( A − B ) + c o s ( A + B )
= 4 ( cos A cos B ) cos 2 A + cos 2 B = \frac{4(\cos A\cos B)}{\cos 2A + \cos 2B} = c o s 2 A + c o s 2 B 4 ( c o s A c o s B )
2 cos A cos B cos 2 A + cos 2 B = 1 cos A \frac{2\cos A\cos B}{\cos 2A + \cos 2B} = \frac{1}{\cos A} c o s 2 A + c o s 2 B 2 c o s A c o s B = c o s A 1
2 cos 2 A cos B = 2 cos 2 A − 1 + 2 cos 2 B − 1 2\cos^2A\cos B = 2\cos^2A - 1 + 2\cos^2B - 1 2 cos 2 A cos B = 2 cos 2 A − 1 + 2 cos 2 B − 1
2 cos 2 A ( cos B − 1 ) = 2 ( cos 2 B − 1 ) 2\cos^2A(\cos B - 1) = 2(\cos^2B - 1) 2 cos 2 A ( cos B − 1 ) = 2 ( cos 2 B − 1 )
cos 2 A = cos B + 1 = 2 cos 2 B 2 \cos^2A = \cos B + 1 = 2\cos^2\frac{B}{2} cos 2 A = cos B + 1 = 2 cos 2 2 B
cos A = ± 2 cos B 2 \cos A = \pm\sqrt{2}\cos\frac{B}{2} cos A = ± 2 cos 2 B
Given cos θ = cos α cos β 1 − sin α sin β , \cos \theta = \frac{\cos\alpha\cos\beta}{1 - \sin\alpha\sin\beta}, cos θ = 1 − s i n α s i n β c o s α c o s β , we have to prove that one of the values of
tan θ 2 \tan \frac{\theta}{2} tan 2 θ is tan α 2 − tan β 2 1 − tan α 2 tan β 2 \frac{\tan \frac{\alpha}{2} - \tan\frac{\beta}{2}}{1 -
\tan\frac{\alpha}{2}\tan\frac{\beta}{2}} 1 − t a n 2 α t a n 2 β t a n 2 α − t a n 2 β
tan 2 θ 2 = 1 − cos θ 1 + cos θ \tan^2\frac{\theta}{2} = \frac{1 - \cos\theta}{1 + \cos\theta} tan 2 2 θ = 1 + c o s θ 1 − c o s θ
= 1 − cos α cos β 1 − sin α sin β 1 + cos α cos β 1 − sin α sin β = \frac{1 - \frac{\cos\alpha\cos\beta}{1 - \sin\alpha\sin\beta}}{1 + \frac{\cos\alpha\cos\beta}{1 -
\sin\alpha\sin\beta}} = 1 + 1 − s i n α s i n β c o s α c o s β 1 − 1 − s i n α s i n β c o s α c o s β
= 1 − ( cos α cos β + sin α sin β ) 1 + ( cos α cos β − sin α sin β ) = \frac{1 - (\cos\alpha\cos\beta + \sin\alpha\sin\beta)}{1 + (\cos\alpha\cos\beta - \sin\alpha\sin\beta)} = 1 + ( c o s α c o s β − s i n α s i n β ) 1 − ( c o s α c o s β + s i n α s i n β )
= 1 − cos ( α − β ) 1 + cos ( α + β ) = \frac{1 - \cos(\alpha - \beta)}{1 + \cos(\alpha + \beta)} = 1 + c o s ( α + β ) 1 − c o s ( α − β )
= 2 sin 2 α − β 2 2 cos 2 α + β 2 = \frac{2\sin^2\frac{\alpha - \beta}{2}}{2\cos^2\frac{\alpha + \beta}{2}} = 2 c o s 2 2 α + β 2 s i n 2 2 α − β
tan θ 2 = sin α − β 2 cos α + β 2 \tan\frac{\theta}{2} = \frac{\sin\frac{\alpha - \beta}{2}}{\cos\frac{\alpha + \beta}{2}} tan 2 θ = c o s 2 α + β s i n 2 α − β
= sin α 2 cos β 2 − cos α 2 cos β 2 cos α 2 cos β 2 − sin α 2 sin β 2 = \frac{\sin\frac{\alpha}{2}\cos\frac{\beta}{2} -
\cos\frac{\alpha}{2}\cos\frac{\beta}{2}}{\cos\frac{\alpha}{2}\cos\frac{\beta}{2} - \sin\frac{\alpha}{2}\sin\frac{\beta}{2}} = c o s 2 α c o s 2 β − s i n 2 α s i n 2 β s i n 2 α c o s 2 β − c o s 2 α c o s 2 β
Dividing both numerator and denominator by cos α 2 cos β 2 \cos\frac{\alpha}{2}\cos\frac{\beta}{2} cos 2 α cos 2 β
tan θ 2 = tan α 2 − tan β 2 1 − tan α 2 tan β 2 \tan\frac{\theta}{2} = \frac{\tan \frac{\alpha}{2} - \tan\frac{\beta}{2}}{1 -
\tan\frac{\alpha}{2}\tan\frac{\beta}{2}} tan 2 θ = 1 − t a n 2 α t a n 2 β t a n 2 α − t a n 2 β
Given tan α = sin θ sin ϕ cos θ + cos ϕ , \tan\alpha = \frac{\sin\theta\sin\phi}{\cos\theta + \cos\phi}, tan α = c o s θ + c o s ϕ s i n θ s i n ϕ , we have to prove that one of the values of
tan α 2 \tan\frac{\alpha}{2} tan 2 α is tan θ 2 tan ϕ 2 \tan\frac{\theta}{2}\tan\frac{\phi}{2} tan 2 θ tan 2 ϕ
⇒ 2 tan α 2 1 − tan 2 α 2 = 2 tan θ 2 1 + tan 2 θ 2 2 tan ϕ 2 1 + tan 2 ϕ 2 1 − tan 2 θ 2 1 + tan 2 θ 2 + 1 − tan 2 ϕ 2 1 + tan 2 ϕ 2 \Rightarrow \frac{2\tan\frac{\alpha}{2}}{1 - \tan^2\frac{\alpha}{2}} = \frac{\frac{2\tan\frac{\theta}{2}}{1 +
\tan^2\frac{\theta}{2}}\frac{2\tan\frac{\phi}{2}}{1 + \tan^2\frac{\phi}{2}}}{\frac{1 - \tan^2\frac{\theta}{2}}{1 +
\tan^2\frac{\theta}{2}} + \frac{1 - \tan^2\frac{\phi}{2}}{1 + \tan^2\frac{\phi}{2}}} ⇒ 1 − t a n 2 2 α 2 t a n 2 α = 1 + t a n 2 2 θ 1 − t a n 2 2 θ + 1 + t a n 2 2 ϕ 1 − t a n 2 2 ϕ 1 + t a n 2 2 θ 2 t a n 2 θ 1 + t a n 2 2 ϕ 2 t a n 2 ϕ
= 4 tan θ 2 tan ϕ 2 1 + tan 2 ϕ 2 − tan 2 θ 2 − tan 2 ϕ 2 . tan 2 θ 2 + 1 + tan 2 θ 2 − tan 2 ϕ 2 − tan 2 ϕ 2 . tan 2 θ 2 = \frac{4\tan\frac{\theta}{2}\tan\frac{\phi}{2}}{1 + \tan^2\frac{\phi}{2} - \tan^2\frac{\theta}{2} -
\tan^2\frac{\phi}{2}.\tan^2\frac{\theta}{2} + 1 + \tan^2\frac{\theta}{2} -\tan^2\frac{\phi}{2} -
\tan^2\frac{\phi}{2}.\tan^2\frac{\theta}{2}} = 1 + t a n 2 2 ϕ − t a n 2 2 θ − t a n 2 2 ϕ . t a n 2 2 θ + 1 + t a n 2 2 θ − t a n 2 2 ϕ − t a n 2 2 ϕ . t a n 2 2 θ 4 t a n 2 θ t a n 2 ϕ
= 2 tan θ 2 tan ϕ 2 1 − tan 2 θ 2 tan 2 ϕ 2 = \frac{2\tan\frac{\theta}{2}\tan\frac{\phi}{2}}{1 - \tan^2\frac{\theta}{2}\tan^2\frac{\phi}{2}} = 1 − t a n 2 2 θ t a n 2 2 ϕ 2 t a n 2 θ t a n 2 ϕ
Solving this quadratic equationin tan α 2 \tan\frac{\alpha}{2} tan 2 α we obtain the desired result.
Given cos θ = cos α + cos β 1 + cos α cos β , \cos\theta = \frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta}, cos θ = 1 + c o s α c o s β c o s α + c o s β , we have to prove that one of the values of
tan θ 2 \tan\frac{\theta}{2} tan 2 θ is tan α 2 tan β 2 \tan\frac{\alpha}{2}\tan\frac{\beta}{2} tan 2 α tan 2 β
cos θ = cos α + cos β 1 + cos α cos β \cos\theta = \frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta} cos θ = 1 + c o s α c o s β c o s α + c o s β
1 − tan 2 θ 2 1 + tan 2 θ 2 = cos α + cos β 1 + cos α cos β \frac{1 - \tan^2\frac{\theta}{2}}{1 + \tan^2\frac{\theta}{2}} = \frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta} 1 + t a n 2 2 θ 1 − t a n 2 2 θ = 1 + c o s α c o s β c o s α + c o s β
tan 2 θ 2 = 1 − cos α cos β − cos α + cos β 1 − cos α cos β + cos α − cos β \tan^2\frac{\theta}{2} = \frac{1 - \cos\alpha\cos\beta - \cos\alpha + \cos\beta}{1 - \cos\alpha\cos\beta + \cos\alpha -
\cos\beta} tan 2 2 θ = 1 − c o s α c o s β + c o s α − c o s β 1 − c o s α c o s β − c o s α + c o s β
= ( 1 − cos α ) ( 1 + cos β ) ( 1 + cos α ) ( 1 + cos β ) = \frac{(1 - \cos\alpha)(1 + \cos\beta)}{(1 + \cos\alpha)(1 + \cos\beta)} = ( 1 + c o s α ) ( 1 + c o s β ) ( 1 − c o s α ) ( 1 + c o s β )
tan 2 θ 2 = tan 2 α 2 cot 2 β 2 \tan^2\frac{\theta}{2} = \tan^2\frac{\alpha}{2}\cot^2\frac{\beta}{2} tan 2 2 θ = tan 2 2 α cot 2 2 β
tan θ 2 = ± tan α 2 cot β 2 \tan\frac{\theta}{2} = \pm\tan\frac{\alpha}{2}\cot\frac{\beta}{2} tan 2 θ = ± tan 2 α cot 2 β