cos7θ+cos5θsin7θ−sin5θ=tanθ
sin6θ+sin4θcos6θ−cos4θ=−tanθ
cosA+cos3AsinA+sin3A=tan2A
sin8A−sin2Asin7A−sinA=cos4Asec5A
cos2B−cos2Acos2B+cos2A=cot(A+B)cot(A−B)
sin2A−sin2Bsin2A+sin2B=tan(A−B)tan(A+B)
cosA−cos2AsinA+sin2A=cot2A
cos3A+cos5Asin5A−sin3A=tanA
sin2B+sin2Acos2B−cos2A=tan(A−B)
cos(A+B)+sin(A−B)=2sin(45∘+A)cos(45∘+B)
sin3A−sinAcos3A−cosA+sin4A−sin2Acos2A−cos4A=cos2Acos3AsinA
cos(4A−2B)+cos(4B−2A)sin(4A−2B)+sin(4B−2A)=tan(A+B)
tan5θ−tan3θtan5θ+tan3θ=4cos2θcos4θ
cosθ+2cos3θ+cos5θcos3θ+2cos5θ+cos7θ=cos2θ−sin2θtan3θ
cosA+cos3A+cos5A+cos7AsinA+sin3A+sin5A+sin7A=tan4A
cos(θ+ϕ)−2cosθ+cos(θ−ϕ)sin(θ+ϕ)−2sinθ+sin(θ−ϕ)=tanθ
sin3A+2sin5A+sin7AsinA+2sin3A+sin5A=sin5Asin3A
sin(B−C)+2sinB+sin(B+C)sin(A−C)+2sinA+sin(A+C)=sinBsinA
cosA−cos5A−cos9A+cos13AsinA−sin5A+sin9A−sin13A=cot4A
sinA−sinBsinA+sinB=tan2A+Bcot2A−B
cosB−cosAcosA+cosB=cot2A+Bcot2A−B
cosA+cosBsinA+sinB=tan2A+B
cosB−cosAsinA−sinB=cot2A+B
sin(A+B+C)+sin(−A+B+C)−sin(A−B+C)+sin(A+B−C)cos(A+B+C)+cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)=cotB
cos3A+cos5A+cos7A+cos15A=4cos4Acos5Acos6A
cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)+cos(A+B+C)=4cosAcosBcosC
sin50∘−sin70∘+sin10∘=0
sin10∘+sin20∘+sin40∘+sin50∘=sin70∘+sin80∘
sinα+sin2α+sin4α+sin5α=4cos2αcos23αsin3α
sin2θsin27θ+sin23θsin211θ=sin2θsin5θ
cos2θcos2θ−cos3θcos29θ=sin5θsin25θ
sinAsin(A+2B)−sinBsin(B+2A)=sin(A−B)sin(A+B)
(sin3A+sinA)sinA+(cos3A−cosA)cosA=0
2sin(B−C)cosC−sin(B−2C)2sin(A−C)cosC−sin(A−2C)=sinBsinA
sinAcos2A+sin3Acos6A+sin4Acos13AsinAsin2A+sin3Asin6A+sin4Asin13A=tan9A
sin4Asin3A−sin2Asin5A+sin4Asin7Acos2Acos3A−cos2Acos7A+cosAcos10A=cot6Acot5A
cos(36∘−A)cos(36∘+A)+cos(54∘+A)cos(54∘−A)=cos2A
cosAsin(B−C)+cosBsin(C−A)+cosCsin(A−B)=0
sin(45∘+A)sin(45∘−A)=21cos2A
sin(β−γ)cos(α−δ)+sin(γ−α)cos(β−δ)+sin(α−β)cos(γ−δ)=0
2cos13πcos139π+cos133π+cos135π=0
cos55∘+cos65∘+cos175∘=0
cos18∘−sin18∘=2sin27∘
cosA+cos2A+cos4A+cos5AsinA+sin2A+sin4A+sin5A=tan3A
(sinA−sinAcosA+cosB)n+(cosA−cosBsinA+sinB)n=2cotn2A−B or 0 accordingh as n is even or odd.
If α,β,γ are in A.P., show that cosβ=cosγ−cosαsinα−sinγ
If sinθ+sinϕ=3(cosϕ−cosθ) prove that sin3θ+sin3ϕ=0
sin65∘+cos65∘=2cos20∘
sin47∘+cos77∘=cos17∘
cos10∘+sin10∘cos10∘−sin10∘=tan35∘
cos80∘+cos40∘−cos20∘=0
cos5π+cos52π+cos56π+cos57π=0
cosα+cosβ+cosγ+cos(α+β+γ)=4cos2α+βcos2β+γcos2γ+α
If sinα−sinβ=31 and cosβ−cosα=21, prove that
cot2α+β=32
If cosecA+secA=cosecB+secB, prove that tanAtanB=cot2A+B
If sec(θ+α)+sec(θ−α)=2secθ, show that cos2θ=1+cosα
Show that sin50∘cos85∘=221−2sin35∘
Prove that sin20∘sin40∘sin80∘=83
Prove that sinAsin(60∘−A)sin(60∘+A)=41sin3A
If α+β=90∘, find the maximum value of sinαsinβ
Prove that sin25∘cos115∘=21(sin40∘−1)
Prove that sin20∘sin40∘sin60∘sin80∘=163
Prove that cos20∘cos40∘cos80∘=81
Prove that tan20∘tan40∘tan60∘tan80∘=3
Prove that cos10∘cos30∘cos50∘cos70∘=163
Prove that 4cosθcos(3π+θ)cos(3π−θ)=cos3θ
Prove that tanθtan(60∘−θ)tan(60∘+θ)=tan3θ
If α+β=90∘, show that the maximum value of cosαcosβ is 21
If cosα=21,sinβ=31, show that tan2α+βcot2α−β=5+26 or 5−26
If xcosθ=ycos(θ+32π)=zcos(θ+34π), prove that
xy+yz+xz=0
If sinθ=nsin(θ+2α), prove that tan(θ+α)=1−n1+ntanα
If cos(θ−α)sin(θ+α)=1+m1−m, prove that tan(4π−θ)tan(4π−α)=m
If ysinϕ=xsin(2θ+ϕ), show that (x+y)cot(θ+ϕ)=(y−x)cotθ
If cos(α+β)sin(γ+δ)=cos(α−beta)sin(γ−δ), prove that
cotαcotβcotγ=cotδ
If cos(A+B)cos(A−B)+cos(C−D)cos(C+D)=0, prove that tanAtanBtanCtanD=−1
If tan(θ+ϕ)=3tanθ, prove that sin(2θ+ϕ)=2sinϕ
If tan(θ+ϕ)=3tanθ, prove that sin2(θ+ϕ)+sin2θ=2sin2ϕ