10. Transformation Formulae#

10.1. Transformation of products into sums or differences#

We know that sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A\cos B + \cos A\sin B

and sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A\cos B - \cos A\sin B

Adding these, we get 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin(A + B) + \sin(A - B)

Subtracting, we get 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin(A + B) - \sin (A - B)

We also know that cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B

and cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A\cos B + \sin A\sin B

Adding, we get 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos(A - B)

Subtrating we get 2sinsinB=cos(AB)cos(A+B)2\sin \sin B = \cos (A - B) - \cos(A + B)

10.2. Transformation of sums or differences into products#

We have 2sinAcosB=sin(A+B)sin(AB)2\sin A\cos B = \sin(A + B)\sin(A - B)

Substituting for A+B=C,AB=DA + B = C, A - B = D so that A=C+D2A = \frac{C + D}{2} and B=CD2B = \frac{C- D}{2}

sinC+sinD=2sinC+D2cosCD2\sin C + \sin D = 2\sin \frac{C + D}{2}\cos \frac{C - D}{2}

We also have 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin(A + B) - \sin (A - B)

Following similarly sinCsinD=2cosC+D2sinCD2\sin C - \sin D = 2\cos \frac{C + D}{2}\sin \frac{C - D}{2}

For 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos(A - B)

we get cosC+cosD=2cosC+D2cosCD2\cos C + \cos D = 2\cos \frac{C + D}{2}\cos \frac{C - D}{2}

For 2sinsinB=cos(AB)cos(A+B)2\sin \sin B = \cos (A - B) - \cos(A + B)

we get cosCcosD=2sinC+D2sinDC2\cos C - \cos D = 2\sin \frac{C + D}{2}\sin \frac{D - C}{2}

10.3. Problems#

  1. Find the value of sin75sin15cos75+cos15\frac{\sin 75^\circ - \sin 15^\circ}{\cos 75^\circ + \cos 15^\circ}

  2. Simplify the expression (cosθcos3θ)(sin8θ+sin2θ)(sin5θsinθ)(cos4θcos6θ)\frac{(\cos \theta - \cos 3\theta)(\sin 8\theta + \sin 2\theta)}{(\sin 5\theta - \sin\theta)(\cos 4\theta - \cos 6\theta)}

Prove that

  1. sin7θsin5θcos7θ+cos5θ=tanθ\frac{\sin7\theta - \sin5\theta}{\cos7\theta + \cos5\theta} = \tan\theta

  2. cos6θcos4θsin6θ+sin4θ=tanθ\frac{\cos6\theta - \cos4\theta}{\sin6\theta + \sin4\theta} = -\tan\theta

  3. sinA+sin3AcosA+cos3A=tan2A\frac{\sin A + \sin 3A}{\cos A + \cos 3A} = \tan 2A

  4. sin7AsinAsin8Asin2A=cos4Asec5A\frac{\sin 7A - \sin A}{\sin 8A - \sin 2A} = \cos 4A\sec 5A

  5. cos2B+cos2Acos2Bcos2A=cot(A+B)cot(AB)\frac{\cos 2B + \cos 2A}{\cos 2B - \cos 2A} = \cot(A + B)\cot(A - B)

  6. sin2A+sin2Bsin2Asin2B=tan(A+B)tan(AB)\frac{\sin 2A + \sin 2B}{\sin 2A - \sin 2B} = \frac{\tan(A + B)}{\tan(A - B)}

  7. sinA+sin2AcosAcos2A=cotA2\frac{\sin A + \sin 2A}{\cos A - \cos 2A} = \cot \frac{A}{2}

  8. sin5Asin3Acos3A+cos5A=tanA\frac{\sin 5A - \sin 3A}{\cos 3A + \cos 5A} = \tan A

  9. cos2Bcos2Asin2B+sin2A=tan(AB)\frac{\cos 2B - \cos 2A}{\sin 2B + \sin 2A} = \tan(A - B)

  10. cos(A+B)+sin(AB)=2sin(45+A)cos(45+B)\cos (A + B) + \sin(A - B) = 2\sin(45^\circ + A)\cos(45^\circ + B)

  11. cos3AcosAsin3AsinA+cos2Acos4Asin4Asin2A=sinAcos2Acos3A\frac{\cos 3A - \cos A}{\sin 3A - \sin A} + \frac{\cos 2A - \cos 4A}{\sin 4A - \sin 2A} = \frac{\sin A}{\cos 2A\cos 3A}

  12. sin(4A2B)+sin(4B2A)cos(4A2B)+cos(4B2A)=tan(A+B)\frac{\sin (4A - 2B) + \sin (4B - 2A)}{\cos (4A - 2B) + \cos (4B - 2A)} = \tan(A + B)

  13. tan5θ+tan3θtan5θtan3θ=4cos2θcos4θ\frac{\tan 5\theta + \tan 3\theta}{\tan 5\theta - \tan 3\theta} = 4\cos 2\theta\cos 4\theta

  14. cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ=cos2θsin2θtan3θ\frac{\cos 3\theta + 2\cos5\theta + \cos 7\theta}{\cos\theta + 2\cos3\theta + \cos 5\theta} = \cos 2\theta - \sin 2\theta\tan 3\theta

  15. sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A=tan4A\frac{\sin A + \sin 3A + \sin 5A + \sin 7A}{\cos A + \cos 3A + \cos 5A + \cos 7A} = \tan 4A

  16. sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)=tanθ\frac{\sin (\theta + \phi) - 2\sin\theta + \sin (\theta - \phi)}{\cos (\theta + \phi) - 2\cos \theta + \cos(\theta - \phi)} = \tan\theta

  17. sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A\frac{\sin A + 2\sin 3A + \sin 5A}{\sin 3A + 2\sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}

  18. sin(AC)+2sinA+sin(A+C)sin(BC)+2sinB+sin(B+C)=sinAsinB\frac{\sin(A - C) + 2\sin A + \sin(A + C)}{\sin (B - C) + 2\sin B + \sin(B + C)} = \frac{\sin A}{\sin B}

  19. sinAsin5A+sin9Asin13AcosAcos5Acos9A+cos13A=cot4A\frac{\sin A - \sin 5A + \sin 9A - \sin 13A}{\cos A - \cos 5A - \cos 9A + \cos 13 A} = \cot 4A

  20. sinA+sinBsinAsinB=tanA+B2cotAB2\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \frac{A + B}{2}\cot \frac{A - B}{2}

  21. cosA+cosBcosBcosA=cotA+B2cotAB2\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \frac{A + B}{2}\cot \frac{A - B}{2}

  22. sinA+sinBcosA+cosB=tanA+B2\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A + B}{2}

  23. sinAsinBcosBcosA=cotA+B2\frac{\sin A - \sin B}{\cos B - \cos A} = \cot \frac{A + B}{2}

  24. cos(A+B+C)+cos(A+B+C)+cos(AB+C)+cos(A+BC)sin(A+B+C)+sin(A+B+C)sin(AB+C)+sin(A+BC)=cotB\frac{\cos(A + B + C) + \cos(-A + B + C) + \cos(A - B + C) + \cos(A + B - C)}{\sin(A + B + C)+\sin(-A + B + C) - \sin(A - B + C) + \sin(A + B - C)} = \cot B

  25. cos3A+cos5A+cos7A+cos15A=4cos4Acos5Acos6A\cos 3A + \cos 5A + \cos 7A + \cos 15A = 4 \cos 4A\cos 5A \cos 6A

  26. cos(A+B+C)+cos(AB+C)+cos(A+BC)+cos(A+B+C)=4cosAcosBcosC\cos(-A + B + C) + \cos(A - B + C) + \cos(A + B - C) + \cos(A + B + C) = 4\cos A\cos B\cos C

  27. sin50sin70+sin10=0\sin 50^\circ - \sin 70^\circ + \sin 10^\circ = 0

  28. sin10+sin20+sin40+sin50=sin70+sin80\sin 10^\circ + \sin 20^\circ + \sin 40^\circ + \sin 50^\circ = \sin 70^\circ + \sin 80^\circ

  29. sinα+sin2α+sin4α+sin5α=4cosα2cos3α2sin3α\sin\alpha + \sin 2\alpha + \sin 4\alpha + \sin 5\alpha = 4\cos \frac{\alpha}{2}\cos \frac{3\alpha}{2}\sin 3\alpha

Simplify:

  1. cos[θ+(n32)ϕ]cos[θ+(n+32)ϕ]\cos\left[\theta + \left(n - \frac{3}{2}\right)\phi\right] - \cos\left[\theta + \left(n + \frac{3}{2}\right)\phi\right]

  2. sin[θ+(n32)ϕ]+sin[θ+(n+32)ϕ]\sin\left[\theta + \left(n - \frac{3}{2}\right)\phi\right] + \sin\left[\theta + \left(n + \frac{3}{2}\right)\phi\right]

Express as a sum or difference the following:

  1. 2sin5θsin7θ2\sin5\theta\sin7\theta

  2. 2cos7θsin5θ2\cos7\theta\sin5\theta

  3. 2cos11θcos3θ2\cos 11\theta\cos 3\theta

  4. 2sin54sin662\sin54^\circ\sin66^\circ

Prove that

  1. sinθ2sin7θ2+sin3θ2sin11θ2=sin2θsin5θ\sin\frac{\theta}{2}\sin\frac{7\theta}{2} + \sin \frac{3\theta}{2}\sin\frac{11\theta}{2} =\sin 2\theta\sin 5\theta

  2. cos2θcosθ2cos3θcos9θ2=sin5θsin5θ2\cos 2\theta\cos \frac{\theta}{2} -\cos3\theta\cos\frac{9\theta}{2} = \sin5\theta\sin\frac{5\theta}{2}

  3. sinAsin(A+2B)sinBsin(B+2A)=sin(AB)sin(A+B)\sin A\sin(A + 2B) - \sin B\sin(B + 2A) = \sin(A - B)\sin(A + B)

  4. (sin3A+sinA)sinA+(cos3AcosA)cosA=0(\sin 3A + \sin A)\sin A + (\cos 3A - \cos A)\cos A = 0

  5. 2sin(AC)cosCsin(A2C)2sin(BC)cosCsin(B2C)=sinAsinB\frac{2\sin(A - C)\cos C - \sin(A - 2C)}{2\sin(B - C)\cos C - \sin(B - 2C)} = \frac{\sin A}{\sin B}

  6. sinAsin2A+sin3Asin6A+sin4Asin13AsinAcos2A+sin3Acos6A+sin4Acos13A=tan9A\frac{\sin A\sin 2A + \sin 3A\sin 6A + \sin4A\sin 13A}{\sin A\cos2A + \sin 3A\cos 6A + \sin 4A\cos 13A} = \tan 9A

  7. cos2Acos3Acos2Acos7A+cosAcos10Asin4Asin3Asin2Asin5A+sin4Asin7A=cot6Acot5A\frac{\cos 2A\cos 3A - \cos 2A\cos 7A + \cos A\cos 10A}{\sin 4A\sin 3A - \sin 2A\sin 5A + \sin 4A\sin 7A} =\cot 6A\cot 5A

  8. cos(36A)cos(36+A)+cos(54+A)cos(54A)=cos2A\cos(36^\circ - A)\cos(36^\circ + A) + \cos(54^\circ + A)\cos(54^\circ - A) = \cos 2A

  9. cosAsin(BC)+cosBsin(CA)+cosCsin(AB)=0\cos A\sin(B - C) + \cos B\sin(C - A) + \cos C\sin(A - B) = 0

  10. sin(45+A)sin(45A)=12cos2A\sin(45^\circ + A)\sin(45^\circ - A) = \frac{1}{2}\cos 2A

  11. sin(βγ)cos(αδ)+sin(γα)cos(βδ)+sin(αβ)cos(γδ)=0\sin(\beta - \gamma)\cos(\alpha - \delta) + \sin(\gamma - \alpha)\cos(\beta - \delta) + \sin(\alpha - \beta)\cos(\gamma - \delta) = 0

  12. 2cosπ13cos9π13+cos3π13+cos5π13=02\cos\frac{\pi}{13}\cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0

  13. cos55+cos65+cos175=0\cos 55^\circ + \cos65^\circ + \cos 175^\circ = 0

  14. cos18sin18=2sin27\cos 18^\circ -\sin 18^\circ = \sqrt{2}\sin 27^\circ

  15. sinA+sin2A+sin4A+sin5AcosA+cos2A+cos4A+cos5A=tan3A\frac{\sin A + \sin 2A + \sin 4A + \sin 5A}{\cos A + \cos 2A + \cos 4A + \cos 5A} = \tan 3A

  16. (cosA+cosBsinAsinA)n+(sinA+sinBcosAcosB)n=2cotnAB2\left(\frac{\cos A + \cos B}{\sin A - \sin A}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n = 2\cot^n \frac{A - B}{2} or 00 accordingh as nn is even or odd.

  17. If α,β,γ\alpha, \beta, \gamma are in A.P., show that cosβ=sinαsinγcosγcosα\cos\beta = \frac{\sin\alpha - \sin\gamma}{\cos\gamma - \cos\alpha}

  18. If sinθ+sinϕ=3(cosϕcosθ)\sin\theta + \sin\phi = \sqrt{3}(\cos\phi - \cos\theta) prove that sin3θ+sin3ϕ=0\sin3\theta + \sin3\phi = 0

  19. sin65+cos65=2cos20\sin 65^\circ + cos 65^\circ = \sqrt{2}\cos 20^\circ

  20. sin47+cos77=cos17\sin 47^\circ + \cos 77^\circ = \cos 17^\circ

  21. cos10sin10cos10+sin10=tan35\frac{\cos 10^\circ - \sin 10^\circ}{\cos 10^\circ + \sin 10^\circ} = \tan 35^\circ

  22. cos80+cos40cos20=0\cos 80^\circ + \cos 40^\circ - cos 20^\circ = 0

  23. cosπ5+cos2π5+cos6π5+cos7π5=0\cos\frac{\pi}{5} + \cos \frac{2\pi}{5} + \cos\frac{6\pi}{5} + \cos \frac{7\pi}{5} = 0

  24. cosα+cosβ+cosγ+cos(α+β+γ)=4cosα+β2cosβ+γ2cosγ+α2\cos\alpha + \cos\beta + \cos\gamma + \cos(\alpha + \beta + \gamma) = 4\cos\frac{\alpha + \beta}{2}\cos\frac{\beta + \gamma}{2}\cos \frac{\gamma + \alpha}{2}

  25. If sinαsinβ=13\sin\alpha - \sin\beta = \frac{1}{3} and cosβcosα=12,\cos\beta - \cos\alpha = \frac{1}{2}, prove that cotα+β2=23\cot\frac{\alpha + \beta}{2} = \frac{2}{3}

  26. If cosecA+secA=cosecB+secB,\cosec A + sec A = \cosec B + \sec B, prove that tanAtanB=cotA+B2\tan A\tan B = \cot \frac{A + B}{2}

  27. If sec(θ+α)+sec(θα)=2secθ,\sec(\theta + \alpha) + \sec(\theta - \alpha) = 2\sec\theta, show that cos2θ=1+cosα\cos^2\theta = 1 + \cos\alpha

  28. Show that sin50cos85=12sin3522\sin50^\circ\cos85^\circ = \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}

  29. Prove that sin20sin40sin80=38\sin 20^\circ \sin 40^\circ\sin 80^\circ = \frac{\sqrt{3}}{8}

  30. Prove that sinAsin(60A)sin(60+A)=14sin3A\sin A\sin(60^\circ - A)\sin(60^\circ + A) = \frac{1}{4}\sin 3A

  31. If α+β=90,\alpha + \beta = 90^\circ, find the maximum value of sinαsinβ\sin\alpha\sin\beta

  32. Prove that sin25cos115=12(sin401)\sin 25^\circ\cos 115^\circ = \frac{1}{2}(\sin 40^\circ - 1)

  33. Prove that sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ\sin 60^\circ \sin80^\circ = \frac{3}{16}

  34. Prove that cos20cos40cos80=18\cos 20^\circ\cos40^\circ\cos80^\circ = \frac{1}{8}

  35. Prove that tan20tan40tan60tan80=3\tan20^\circ\tan40^\circ\tan60^\circ\tan80^\circ = 3

  36. Prove that cos10cos30cos50cos70=316\cos10^\circ\cos30^\circ\cos50^\circ\cos70^\circ = \frac{3}{16}

  37. Prove that 4cosθcos(π3+θ)cos(π3θ)=cos3θ4\cos\theta\cos\left(\frac{\pi}{3} + \theta\right)\cos\left(\frac{\pi}{3} - \theta\right) = \cos3\theta

  38. Prove that tanθtan(60θ)tan(60+θ)=tan3θ\tan\theta\tan(60^\circ - \theta)\tan(60^\circ + \theta) = \tan3\theta

  39. If α+β=90,\alpha + \beta = 90^\circ, show that the maximum value of cosαcosβ\cos\alpha\cos\beta is 12\frac{1}{2}

  40. If cosα=12,sinβ=13,\cos\alpha = \frac{1}{\sqrt{2}}, \sin\beta = \frac{1}{\sqrt{3}}, show that tanα+β2cotαβ2=5+26\tan\frac{\alpha + \beta}{2}\cot\frac{\alpha - \beta}{2} = 5 + 2\sqrt{6} or 5265- 2\sqrt{6 }

  41. If xcosθ=ycos(θ+2π3)=zcos(θ+4π3),x\cos\theta = y\cos\left(\theta + \frac{2\pi}{3}\right) = z\cos\left(\theta + \frac{4\pi}{3}\right), prove that xy+yz+xz=0xy + yz + xz = 0

  42. If sinθ=nsin(θ+2α),\sin\theta = n\sin(\theta + 2\alpha), prove that tan(θ+α)=1+n1ntanα\tan(\theta + \alpha) = \frac{1 + n}{1 - n}\tan\alpha

  43. If sin(θ+α)cos(θα)=1m1+m,\frac{\sin(\theta + \alpha)}{\cos(\theta - \alpha)} = \frac{1 - m}{1 + m}, prove that tan(π4θ)tan(π4α)=m\tan\left(\frac{\pi}{4} - \theta\right)\tan\left(\frac{\pi}{4} - \alpha\right) = m

  44. If ysinϕ=xsin(2θ+ϕ),y\sin\phi = x\sin(2\theta + \phi), show that (x+y)cot(θ+ϕ)=(yx)cotθ(x + y)\cot(\theta + \phi) = (y - x)\cot\theta

  45. If cos(α+β)sin(γ+δ)=cos(αbeta)sin(γδ),\cos(\alpha + \beta)\sin(\gamma + \delta) = \cos(\alpha - beta)\sin(\gamma - \delta), prove that cotαcotβcotγ=cotδ\cot\alpha\cot\beta\cot\gamma = cot\delta

  46. If cos(AB)cos(A+B)+cos(C+D)cos(CD)=0,\frac{\cos(A - B)}{\cos(A + B)} + \frac{\cos(C + D)}{\cos(C - D)} = 0, prove that tanAtanBtanCtanD=1\tan A\tan B\tan C\tan D = -1

  47. If tan(θ+ϕ)=3tanθ,\tan(\theta + \phi) = 3\tan\theta, prove that sin(2θ+ϕ)=2sinϕ\sin(2\theta + \phi) = 2\sin\phi

  48. If tan(θ+ϕ)=3tanθ,\tan(\theta + \phi) = 3\tan\theta, prove that sin2(θ+ϕ)+sin2θ=2sin2ϕ\sin2(\theta + \phi) + \sin2\theta = 2\sin2\phi