Given, cos75∘+cos15∘sin75∘−sin15∘
=2cos275∘+15∘cos275∘−15∘2cos275∘+15∘sin275∘−15∘
=2cos45∘cos30∘2cos45∘sin30∘=tan30∘=31
Given, (sin5θ−sinθ)(cos4θ−cos6θ)(cosθ−cos2θ)(sin8θ+sin2θ)=2cos3θsin2θ.2sin5θsinθ2sin2θsinθ.2sin5θcos3θ
=1
We have to prove, cos7θ+cos5θsin7θ−sin5θ=tanθ
L.H.S. =2cos6θcosθ2cos6θsinθ=tanθ
We have to prove, sin6θ+sin4θcos6θ−cos4θ=−tanθ
L.H.S. =2sin5θcosθ2sin5θsin(−θ)=−tanθ
We have to prove, cosA+cos3AsinA+sin3A=tan2A
L.H.S. =2cos2Acos(−A)2sin2Acos(−A)=tan2A
We have to prove, sin8A−sin2Asin7A−sinA=cos4Asec5A
L.H.S. =2cos5Asin3A2cos4Asin3A=cos4Asec5A
We have to prove, cos2B−cos2Acos2B+cos2A=cot(A+B)cot(A−B)
L.H.S. =2sin(A+B)sin(A−B)2cos(A+B)cos(A−B)=cot(A+B)cot(A−B)
We have to prove, sin2A−sin2Bsin2A+sin2B=tan(A−B)tan(A+B)
L.H.S. =2cos(A+B)sin(A−B)2sin(A+B)cos(A−B)
=tan(A−B)tan(A+B)
We have to prove, cosA−cos2AsinA+sin2A=cot2A
L.H.S. =2sin23Asin2A2sin23Acos2A
=cot2A
We have to prove, cos3A+cos5Asin5A−sin3A=tanA
L.H.S. =2cos4AcosA2cos4AsinA=tanA
We have to prove, sin2B+sin2Acos2B−cos2A=tan(A−B)
L.H.S. =2sin(A+B)cos(A−B)2sin(A+B)sin(A−B)=tan(A−B)
We have to prove, cos(A+B)+sin(A−B)=2sin(45∘+A)cos(45∘+B)
L.H.S. =cosAcosB−sinAsinB+sinAcosB−cosAsinB
=(sinA+cosA)(cosB−sinB)
=2(21sinA+21cosA)(21cosB−21sinB)
=2(sinAcos45∘+sin45∘sinA)(cos45∘cosB−sin45∘sinB)
=2sin(45∘+A)cos(45∘+B)
We have to prove, sin3A−sinAcos3A−cosA+sin4A−sin2Acos2A−cos4A=cos2Acos3AsinA
L.H.S. =2cos2AsinA−2sin2AsinA+2cos3AsinA2sin3AsinA
=cos2A−sin2A+cos3Asin3A
=cos2Acos3Acos2Asin3A−sin2Acos3A=cos2Acos3Asin(3A−2A)
=cos3Acos3AsinA
Given, cos(4A−2B)+cos(4B−2A)sin(4A−2B)+sin(4B−2A)=tan(A+B)
L.H.S. =2cos(A+B)cos3(A−B)2sin(A+B)cos3(A−B)=tan(A+B)
We have to prove, tan5θ−tan3θtan5θ+tan3θ=4cos2θcos4θ
L.H.S. =cos5θsin5θ−cos3θsin4θcos5θsin5θ+cos3θsin4θ
=sin5θcos3θ−sin3θcos5θsin5θcos3θ+sin3θcos5θ
=sin2θsin8θ=sin2θ2sin4θcosθ
=sin2θ4sin2θcos2θcos4θ=4cos2θcos4θ
We have to prove, cosθ+2cos3θ+cos5θcos3θ+2cos5θ+cos7θ=cos2θ−sin2θtan3θ
Adding first and last terms of numerator and denominator, we have
L.H.S. =2cos3θcos2θ+2cos3θ2cos5θcos2θ+2cos5θ
=cos3θ(cos2θ+1)cos5θ(cos2θ+1)
=cos3θcos3θcos2θ−sin3θsin2θ
=cos2θ−sin2θtan3θ
We have to prove, cosA+cos3A+cos5A+cos7AsinA+sin3A+sin5A+sin7A=tan4A
Pairing first and fourth term and second and third term in numerator and denominator, we get
L.H.S. =2cos4Acos3A+2cos4AcosA2sin4Acos3A+2sin4AcosA
=2cos4A(cos3A+cosA)2sin4A(cos3A+cosA)
=tan4A
We have to prove, cos(θ+ϕ)−2cosθ+cos(θ−ϕ)sin(θ+ϕ)−2sinθ+sin(θ−ϕ)=tanθ
Pairing first and last term in both numerator and denominator, we get
L.H.S. =2cosθcosϕ+2cosθ2sinθcosϕ+2sinθ
=2cosθ(cosϕ+1)2sinθ(cosϕ+1)
=tanθ
We have to prove that, sin3A+2sin5A+sin7AsinA+2sin3A+sin5A=sin5Asin3A
Pairing first and last term in both numerator and denominator, we get
L.H.S. =2sin5Acos2A+2sin5A2sin3Acos2A+2sin3A
=sin5A(cos2A+1)sin3A(cos2A+1)
=sin5Asin3A
We have to prove that, sin(B−C)+2sinB+sin(B+C)sin(A−C)+2sinA+sin(A+C)=sinBsinA
Pairing first and last term in both numerator and denominator, we get
L.H.S. =2sinBcosC+2sinB2sinAcosC+2sinA
=sinB(cosC+1)sinA(cosC+1)
=sinBsinA
We have to prove that, cosA−cos5A−cos9A+cos13AsinA−sin5A+sin9A−sin13A=cot4A
Pairing first and last term and second and third term in both numerator and denominator, we get
L.H.S. =3cos7Acos6A−2cos7Acos2A−2cos7Asin6A+2cos7Asin2A
=2cos7A(cos6A−cos2A)2cos7A(sin2A−sin6A)
=−2sin4Asin2A−2cos4Asin2A
=cot4A
We have to prove that, sinA−sinBsinA+sinB=tan2A+Bcot2A−B
L.H.S. =2cos2A+Bsin2A−B2sin2A+Bcos2A−B
=tan2A+Bcot2A−B
We have to prove that, cosB−cosAcosA+cosB=cot2A+Bcot2A−B
L.H.S. =2sin2A+Bsin2A−B2cos2A+Bcos2A−B
=cot2A+Bcot2A−B
We have to prove that, cosA+cosBsinA+sinB=tan2A+B
L.H.S. =2cos2A+Bcos2A−B2sin2A+Bcos2A−B
=tan2A+B
We have to prove that, cosB−cosAsinA−sinB=cot2A+B
L.H.S. =2sin2A+Bsin2A−B2cos2A+Bsin3A−B
=cot2A+B
We have to prove that, sin(A+B+C)+sin(−A+B+C)−sin(A−B+C)+sin(A+B−C)cos(A+B+C)+cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)=cotB
L.H.S. =2sin(B+C)cosA+2sin(B−C)cosA2cos(B+C)cosA+2cosAcos(B−C)
=sin(B+C)+sin(B−C)cos(B+C)+cos(B−C)
=2sinBcosC2cosBcosC=cotB
We have to prove that, cos3A+cos5A+cos7A+cos15A=4cos4Acos5Acos6A
Adding first and last and two middle terms together, we gte
L.H.S. =2cos9Acos6A+2cos6AcosA
=2cos6A(cos9A+cosA)
=4cos4Acos5Acos6A
We have to prove that, cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)+cos(A+B+C)=4cosAcosBcosC
Adding first two and last two, we get
L.H.S. =2cosCcos(B−A)+2cos(A+B)cosC
=2cosC(cos(B−A)+cos(A+B))
=4cosAcosBcosC
We have to prove that, sin50∘−sin70∘+sin10∘=0
L.H.S. =−2cos60∘sin10∘+sin10∘
=−sin10∘+sin10∘=0
We have to prove that, sin10∘+sin20∘+sin40∘+sin50∘=sin70∘+sin80∘
L.H.S. =sin10∘+sin50∘+sin20∘+sin40∘
=2sin30∘cos20∘+2sin30∘cos10∘
=2sin30∘(cos20∘+cos10∘)
=sin70∘+sin80∘[∵cosθ=sin(90∘−θ)]
We have to prove that, sinα+sin2α+sin4α+sin5α=4cos2αcos23αsin3α
L.H.S. =sinα+sin5α+sin2α+sin4α
=2sin3αcos2α+2sin3αcosα
=2sin3α(cos2α+cosα)
=4cos2αcos23αsin3α
Given, cos[θ+(n−23)ϕ]−cos[θ+(n+23)ϕ]
=2sin[θ+nϕ]sin[2ϕ]
Given, sin[θ+(n−23)ϕ]+sin[θ+(n+23)ϕ]
=2sin[θ+nϕ]cos[2ϕ]
Given, 2sin5θsin7θ
Let the angles are A and B then cosC−cosD=2sin2C+Dcos2D−C
Thus, comparing, we get
C+D=14,D−C=10
D=12,C=2
Thus, required expression is cos2θ−cos12θ
Given, 2cos7θsin5θ
=sin12θ+sin2θ
Given, 2cos11θcos3θ
=cos14θ+cos8θ
Given, 2sin54∘sin66∘
=cos12∘−cos120∘
We have to prove that sin2θsin27θ+sin23θsin211θ=sin2θsin5θ
L.H.S. =21(cos3θ−cos4θ)+21(cos4θ−cos7θ)
=sin2θ+sin5θ
We have to prove that, cos2θcos2θ−cos3θcos29θ=sin5θsin25θ
L.H.S. =21(cos25θ+cos23θ)−21(cos215θ+cos23θ)
=21(2sin5θsin25θ)
=sin5θsin25θ
We have to prove that, sinAsin(A+2B)−sinBsin(B+2A)=sin(A−B)sin(A+B)
L.H.S. =21(2sinAsin(A+2B)−2sinBsin(B+2A))
=21(cosB−cos(A+B)−cosA−cos(A+B))
=212sin(A−B)sin(A+B)
We have to prove that, (sin3A+sinA)sinA+(cos3A−cosA)cosA=0
L.H.S. =2sin2AcosAsinA−2sin2AsinAcosA=0
We have to prove that, 2sin(B−C)cosC−sin(B−2C)2sin(A−C)cosC−sin(A−2C)=sinBsinA
L.H.S. =sinB+sin(B−2C)−sin(B−2C)sinA+sin(A−2C)−sin(A−2C)
=sinBsinA
We have to prove that, sinAcos2A+sin3Acos6A+sin4Acos13AsinAsin2A+sin3Asin6A+sin4Asin13A=tan9A
L.H.S. =sin3A−sinA+sin9A−sin3A+sin17A−sin9AcosA−cos3A+cos3A−cos9A+cos9A−cos17A
=sin17A−sinAcosA−cos17A
=2cos9Asin8A2sin8Asin9A=tan9A
We have to prove that, sin4Asin3A−sin2Asin5A+sin4Asin7Acos2Acos3A−cos2Acos7A+cosAcos10A=cot6Acot5A
L.H.S. =cosA−cos7A−cos3A+cos7A+cos3A−cos11Acos5A+cosA−cos9A−cos5A+cos11A+cos9A
=cosA−cos11AcosA+cos11A
=sin6Asin5Acos6Acos5A=cot6Acot5A
We have to prove that, cos(36∘−A)cos(36∘+A)+cos(54∘+A)cos(54∘−A)=cos2A
L.H.S. =21(cos(72∘)+cos2A)+21(cos108∘+cos2A)
=21(sin18∘+−sin18∘+2cos2A)[∵sin18∘=cos(90∘−18∘)=cos72∘ and cos108∘=cos(90∘+18∘)=−sin18∘]
=cos2A
We have to prove that cosAsin(B−C)+cosBsin(C−A)+cosCsin(A−B)=0
L.H.S. =21[sin(A+B−C)−sin(A−B+C)+sin(B+C−A)−sin(B−C+A)+sin(A−B+C)−sin(C−A+B)]=0
sin(45∘+A)sin(45∘−A)=21cos2A
L.H.S. =21(2sin(45∘+A)sin(45∘−A))=21[cos2A−cos90∘]=21cos2A
We have to prove that, sin(β−γ)cos(α−δ)+sin(γ−α)cos(β−δ)+sin(α−β)cos(γ−δ)=0
L.H.S. =21[sin(α+β−γ−δ)+sin(β+δ−γ−α)+sin(γ−α+β−δ)+sin(γ−α−β+δ)+sin(α−β+γ−δ)−sin(α−β−γ+δ)]
=0
We have to prove that, 2cos13πcos139π+cos133π+cos135π=0
L.H.S. =cos1310π+cos138π+cos(π−1310π)+cos(π−138π)
=cos1310π+cos138π−cos1310π−cos138π=0
We have to prove that, cos55∘+cos65∘+cos175∘=0
L.H.S. =2cos60∘cos5∘+cos(180∘−5∘)
=2.21.cos5∘−cos5∘=0
We have to prove that, cos18∘−sin18∘=2sin27∘
L.H.S. =cos18∘−cos(90∘−72∘)=cos18∘−cos72∘
=2sin45∘sin27∘=2sin27∘
We have to prove that, cosA+cos2A+cos4A+cos5AsinA+sin2A+sin4A+sin5A=tan3A
L.H.S. =(cos5A+cosA)+(cos4A+cos2A)(sin5A+sinA)+(sin4A+sin2A)
=2cos3Acos2A+2cos3AcosA2sin3Acos2A+2sin3AcosA
=cos3A(cos2A+cosA)sin3A(cos2A+cosA)=tan3A
L.H.S =(2cos2A+Bsin2A−B2cos2A+Bcos2A−B)n+(2sin2A+Bsin2B−A2sin2A+Bcos2A−B)n
=(cos2A−B)n+(−cot2A−B)n
=cotn2A−B[1+(−1)n] which is 0 if n is odd and 2cosn2A−B if
n is even.
Given α,β,γ are in A.P. ∴2β=α+γ
R.H.S. =cosγ−cosαsinα−sinγ=2sin2γ+αsin2α−γ2cos2α+γsin2α−γ
=cot2α+γ=cotβ
Given sinθ+sinϕ=3(cosϕ−cosθ)
2sin2θ+ϕcos2θ−ϕ=3.2.sin2θ+ϕsin2θ−ϕ
=sin2θ+ϕ[cos2θ−ϕ−3sinθ−ϕ]=0
∴sin2θ+ϕ=0 or tan2θ−ϕ=31
∴θ+ϕ=0∘ or θ−ϕ=60∘
Now, sin3θ+sin3ϕ=2sin23(θ+ϕ)sin23(θ−ϕ)=0
[∵ when θ+ϕ=0;sin23(θ+ϕ)=0 and when θ−ϕ=60∘;cos23(θ−ϕ)=0 ]
We have to prove that sin65∘+cos65∘=2cos20∘
L.H.S. =cos(90∘−65∘)+cos65∘=cos25∘cos65∘
=2cos45∘cos20∘=2.21cos20∘=2cos20∘
We have to prove that sin47∘+cos77∘=cos17∘
L.H.S. =cos(90∘−47∘)+cos77∘
=cos43∘+cos77∘
=2cos60∘cos17∘
=cos17∘[∵2cos60∘=2.21=1
We have to prove that, cos10∘+sin10∘cos10∘−sin10∘=tan35∘
L.H.S. =cos10∘+cos(90∘−10∘)cos10∘−cos(90∘−10∘)
=cos10∘+cos80∘cos10∘−cos80∘
=2cos45∘cos35∘2cos45∘cos35∘=tan35∘
We have to prove that, cos80∘+cos40∘−cos20∘=0
L.H.S. =2cos60∘cos20∘−cos20∘
=cos20∘−cos20∘[∵2cos60∘=2.21=1]
We have to prove that cos5π+cos52π+cos56π+cos57π=0
L.H.S. =cos57π+cos5π+cos52π+cos56π
=2cos54πcos53π+2cos54πcos52π
=2cos54π[cos53π+cos(π−53π)]
=2cos54π(cos53π−cos53π)=0
We have to prove that cosα+cosβ+cosγ+cos(α+β+γ)=4cos2α+βcos2β+γcos2γ+α
L.H.S. =cos(α+β+γ)+cosα+cosβ+cosγ
=2cos(α+2β+γ)cos2β+γ+2cos2β+γcos2β−γ
=2cos2β+γ[2cos(α+2β+γ)+cos2β−γ]
=4cos2α+βcos2β+γcos2γ+α
Given, sinα−sinβ=31 and cosbeta - cosalpha = frac{1}{2}
Dividing we get, cosβ−cosαsinα−sinβ=32
⇒2sin2α+βsin2α−β2cos2α+βsin2α−β=32
⇒cot2α+β=32
Given, cosecA+secA=cosecB+secB
secA−secB=cosecB−cosecA
⇒cosAcosBcosB−cosA=sinAsinBsinA−sinB
⇒cosAcosB2sin2A+Bsin2A−B=sinAsinB2cos2A+Bsin2A−B
⇒tanAtanB=cot2A+B
Given, sec(θ+α)+sec(θ−α)=2secθ
⇒cos(θ+α)1+cos(θ−α)1=cosθ2
cosθ[cos(θ−α)+cos(θ+α)]=2cos(θ+α)cos(θ−α)
cosθ.2cosθcosα=cos2θ+cos2α
We know that [cos(theta + theta) = costheta.costheta - sinthetasintheta = 2cos^2theta - 1]
Thus, the above equation becomes
2cos2θcosα=2cos2θ−1+2cos2α−1
2cos2θ(cosα−1)=2(cos2α−1)
⇒cos2θ=1+cosα
We have to prove that sin50∘cos85∘=221−2sin35∘
L.H.S. =21[sin(85∘+sin50∘)−sin(85∘−50∘)]
=21[sin135∘−sin35∘]
=21[21−sin35∘]
=221−2sin35∘
We have to prove that, sin20∘sin40∘sin80∘=83
L.H.S. =21(2sin80∘sin40∘)sin20∘
=21[cos(80∘−40∘)−cos(80∘+40∘)]sin20∘
=21(cos40∘−cos120∘)sin206∘
=41(2cos40∘sin20∘−2cos120∘sin20∘)
=41[sin(40∘+20∘)−sin(40∘−20∘)−2.−21sin20∘]
=41[sin60∘−sin20∘+sin20∘]=41sin60∘=83
We have to prove that, sinAsin(60∘−A)sin(60∘+A)=41sin3A
L.H.S. =21sinA[2sin(60∘−A)sin(60∘+A)]
=21sinA[cos(60∘+A−60∘+A)−cos(60∘+A+60∘−A)]
=21sinA(cos2A−cos120∘)
=41(2sinAcos2A−2cos120∘sinA)
41[sin(2A+A)−sin(2A−A)−2.−21sinA]
=41(sin3A−sinA+sinA)=41sin3A
Let p=sinαsinβ
=212sinαsinβ
=21[cos(α−β)−cos(α+beta)]
=21[cos(α−β)−cos90∘][∵α+β=90∘ (given)]
=21cos(α−β)
Maximum value of cos(α−β) is 1, hence maximum value of p is 21
We have to prove that, sin25∘cos115∘=21(sin40∘−1)
L.H.S. =sin25∘cos115∘
=212sin25∘cos115∘=21[sin140∘−sin90∘]
=21[cos50∘−1]=21[sin40∘−1]
We have to prove that, sin20∘sin40∘sin60∘sin80∘=163
L.H.S. =21[(2sin20∘sin80∘)(sin40∘sin60∘)]
=21(cos60∘−cos100∘)23sin40∘
=43[cos60∘sin40∘+sin10∘sin40∘]
=83[2cos60∘sin40∘+2cos80∘sin40∘]
=83[sin100∘−sin20∘+sin120∘−sin40∘]
=83[cos10∘−(sin20∘+sin40∘)+cos30∘]
=83[cos10∘−2sin30∘cos10∘+23]
=83[cos10∘−2.21.cos10∘+23]=163
We have to prove that, cos20∘cos40∘cos80∘=81
L.H.S. =2cos20∘cos80∘1cos40∘
=21[cos100∘+cos60∘]cos40∘
=21[−sin10∘cos40∘+21cos40∘]
=41[−2cos40∘sin10∘+cos40∘]
=41[−sin50∘+sin30∘+cos40∘]
=81[∵sin50∘=cos40∘ and sin30∘=21]
We have to prove that, tan20∘tan40∘tan60∘tan80∘=3
Using results of 70 and 71 it can be solved.
We have to prove that, cos10∘cos30∘cos50∘cos70∘=163
L.H.S. =21(2cos10∘cos70∘)(23cos50∘)
=43[cos80∘+cos60∘]cos50∘
=43[cos80∘cos50∘+21cos50∘]
=83[2cos80∘cos50∘+cos50∘]
=83[cos130∘+cos30∘+cos50∘]
=83[cos(180∘−50∘)+cos30∘+cos50∘]
=163
We have to prove that, 4cosθcos(3π+θ)cos(3π−θ)=cos3θ
L.H.S. =2cosθ.2cos(3π+θ)cos(3π−θ)
=2cosθ[cos(32π)+cos2θ]
=−cosθ+2cosθcos2θ=−cosθ+cos3θ+cosθ=cos3θ
We have to prove that tanθtan(60∘−θ)tan(60∘+θ)=tan3θ
We have just proven, 4cosθcos(3π+θ)cos(3π−θ)=cos3θ
Let us evaluate sinθsin(60∘−θ)sin(60∘+θ)
=21sinθ.2sin(60∘−θ)sin(60∘+θ)
=21sinθ[cos2θ−cos32π]
=21sinθcos2θ+41sinθ
=41(sin3θ−sinθ)+41sinθ
=41sin3θ
Thus, we have the desired result.
Let p=cosαcosβ
=212cosαcosβ=21[cos(α+β)+cos(α−β)]
=21cos(α−β)[∵α+β=90∘∴cos(α+β)=0]
Now maximum value of cos(α−β) is 1 therefore maximum value of p is 21
Since cosα=21, therefore α lies either in first quadrant or fourth quadrant. So
sinα=±21
We have to compute tan2α+βcot2α−β=5+26
=cos2α+βsin2α−βsin2α+βcos2α−β
=sinα−sinβsinα+sinβ
Substituting the two pair of values, we get the desired answer.
Let xcosθ=ycos(θ+32π)=zcos(θ+34π)=k
Let p=xk+yk+zk
=cosθ+cos(θ+32π)+cos(θ+34π)
=cosθ+2cos(θ+π)cos3π=0[∵cos3π=21 and cos(θ+π)=−cosθ]
Thus, xy+yz+zx=0
Given, sinθ=nsin(θ+2α)
⇒n1=sinθsin(θ+2α)
Using componendo and dividendo
⇒1−n1+n=sin(θ+2α)−sinθsin(θ+2α)+sinθ
=cos(θ+α)sinαsin(θ+α)cosα
=tan(θ+α)cotα
Given, cos(θ−α)sin(θ+α)=1+m1−m
Using componendo and dividendo
⇒sin(θ+α)−cos(θ−α)sin(θ+α)+cos(θ−α)=1−m−1−m1−m+1+m
⇒sin(θ+α)−sin(2π−(θ−α))sin(θ+α)+sin(2π−(θ−α))=−2m2=m−1
⇒cos(4π+α)sin(θ−4π)sin(4π+α)cos(θ−4π)=−m1
⇒m=tan(4π−θ)tan(4π−α)
Given, ysinϕ=xsin(2θ+ϕ)
sin(2θ+ϕ)sinϕ=yx
By componendo and dividendo
sin(2θ+ϕ)−sinϕsinϕ+sin(2θ+ϕ)=y−xx+y
⇒2cos(θ+ϕ)sinθ2sin(θ+ϕ)cosθ=y−xx+y
⇒cot(θ+ϕ)cotθ=y−xx+y
Hence, proven.
Given, cos(α+β)sin(γ+δ)=cos(α−beta)sin(γ−δ)
⇒cos(α−β)cos(α+β)=sin(γ+δ)sin(γ−δ)
By componendo and dividendo
⇒cos(α−β)−cos(α+β)cos(α+β)+cos(α−β)=sin(γ+δ)−sin(γ−δ)sin(γ−δ)+sin(γ+δ)
⇒2sinαsinβ2cosαcosβ=2cosγsinδ2sinγcosδ
⇒cotαcotβ=cosγcotδ
Hence, proven.
83, 84 and 85 can be solved by using componendo and dividendo as well.