Given equation is sinθ=−1
⇒sinθ=sin(−2π)
⇒θ=nπ+(−1)n(−2π)
θ=nπ+(−1)n+12π where n∈I.
Given equation is cosθ=−21
cosθ=cos32π⇒θ=2nπ±32π where n∈I.
Given equation is tanθ=−3
⇒tanθ=tan(−3π)⇒θ=nπ+(−3π)
=nπ−3π where n∈I.
Given equation is secθ=−2
⇒secθ=sec43π⇒θ=2nπ±43π where x∈I
Given equation is sin8θ=sinθ⇒sin9θ−sinθ=0
⇒2cos5θ.sin4θ=0
Either cos5θ=0 or sin4θ=0
⇒5θ=(2n+1)2π or 4θ=nπ
θ=4nπ,(2n+1)10π where n∈I.
Given equation is sin5x=cos2x
⇒cos2x=cos(2π−5x)
2x=2nπ±(2π−5x)
x=(4n+1)14π,−(4n−1)6π where n∈I
Given equation is sin3x=sinx⇒sin3x−sinx=0
⇒cos2x.sinx=0
Either cos2x=0 or sinx=0
⇒2x=(2n+1)2π or x=nπ
x=nπ,(2n+1)4π where n∈I
Given equation is sin3x=cos2x⇒cos2x=cos(2π−3x)
⇒2x=2nπ±(2π−3x)
x=52nπ+10π,−2nπ+2π
Given equation is sinax+cosbx=0
⇒sinax+sin(2π−bx)=0
⇒2sin(4π+2(a−b)x)cos(2(a+b)x−4π)=0
Either ⇒sin(4π+2(a−b)x)=0 or cos(2(a+b)x−4π)=0
⇒4π+2(a−b)x=nπ or 2(a+b)x−4π=(2n+1)2π
x=a−b2nπ−2π,a+b(2n+1)π+2π
Given tanxtan4x=1⇒sinxsin4x=cosxcos4x
⇒cosxcos4x−sinxsin4x=0
cos5x=0⇒5x=(2n+1)2π⇒x=10(2n+1)π
Given equation is cosθ=sin105∘+cos105∘
sin105∘=sin(60∘+45∘)=223+1
cos105∘=cos(60∘+45∘)=221−3
⇒cosθ=21⇒θ=2nπ±4π
Given equation is 7cos2θ+3sin2θ=4
⇒4cos2θ+3=4⇒cosθ=±21
If cosθ=21⇒θ=2nπ±3π
If cosθ=−21⇒θ=2nπ±32π
Given equation is 3tan(θ−15∘)=tan(θ+15∘)
⇒tan(θ−15∘)tan(θ+15∘)=13
Applying componendo and dividendo
⇒tan(θ+15∘)−tan(θ−15∘)tan(θ+15∘)+tan(θ−15∘)=24
⇒sin(θ+15∘−θ+15∘)sin(θ+15∘+θ−15∘)=2
⇒sin2θ=2⇒2θ=nπ+(−1)n2π⇒θ=2nπ+(−1)n4π
Given equation is tanx+cotx=2⇒tan2x−2tanx+1=0
⇒(tanx−1)2=0⇒tanx=1⇒x=nπ+4π
Given equation is sin2θ=sin2α⇒sinθ=±sinα
θ=nπ±α
Given equation is tan2x+cot2x=2
⇒tan4x−2tan2x+1=0⇒(tan2x−1)2=0
tanx=±⇒x=nπ±4π
Given equation is tan2x=3cosec2x−1
⇒tan2x=2+3cot2x⇒tan4x−2tan2x−3=0
⇒(tan2x+1)(tan2x−3)=0
If tan2x+1=0 then x will become imaginary.
∴tanx=±3⇒x=nπ±3π
Given equation is 2sin2x+sin22x=2
⇒2sin2x+4sin2xcos2x=2⇒sin2x+2sin2x(1−sin2x)=1
⇒(2sin2x−1)(sin2x−1)=0
⇒sinx=±21 or sinx=±1
⇒x=nπ±4π,(2n+1)2π
Given equation is 7cos2x+3sin2x=4
⇒4cos2x+3=4⇒cosx=±21
If cosx=21⇒x=2nπ±3π
If cosx=−21⇒x=2nπ±32π
Given equation is 2cos2x+2sinx=2
⇒2sinx=2(1−cos2x)=4sin2x
⇒2sinx(1−22sin23x)=0
Either:math:sin x = 0 Rightarrow x = npi where n∈I
or sin23x=221⇒sinx=21
⇒x=nπ+(−1)n6π
We know that tan22x=1+cosx1−cosx
∴8(1+cosx1−cosx)=1+secx=cosx1+cosx
⇒8cosx−8cos2x=(1+cosx)2
⇒9cos2x−6cosx+1=0⇒(3cosx−1)2=0
cosx=31⇒x=2nπ±cos−131 where ninI.
Check 2x=(2n+1)2π and cosx==0 else equation will be meaningless.
⇒x=(2n+1)π and x=(2n+1)2π
Given equation is cosxcos2xcos3x=41
⇒(2cosxcos3x)2cos2x=1⇒2cos4xcos2x+2cos22x−1=0
⇒cos4x[2cos2x+1]=0
If cos4x=0⇒x=(2n+1)8π
If 2cos2x+1=0⇒2x=2nπ±32π
x=nπ±3π
Given equation is tanx+tan2x+tan3x=0
⇒tanx+tan2x+1−tanxtan2xtanx+tan2x=0
⇒(tanx+tan2x)(1+1−tanxtan2x1)=0
If tanx+tan2x=0⇒tanx=−tan2x⇒x=nπ−2x⇒x=3nπ
If 1+1−tanxtan2x1=0 then tanxtan2x=2
1−tan2xtan2x=1⇒tanx=±21
x=nπ±tan−121
Given equation is cotx−tanx−cosx+sinx=0
⇒cosxsinxcos2x−sin2x−(cosx−sinx)=0
⇒(cosx−sinx)(cosxsinxcosx+sinx−1)=0
If cosx−sinx=0⇒tanx=1⇒x=nπ+4π
If cosxsinxcosx+sinx−1=0
⇒cosx+sinx=cosxsinx
Squaring, we get 1+sin2x=41sin2x
⇒sin2x=2±22
However, 2+22>1 which is not possible.
⇒sin2x=2−22=sinα (let)
x=2nπ+2(−1)nα
Given equation is 2sin2x−5sinxcosx−8cos2x=−2
Clearly, cosx=0 else sin2x=−1 which is not possible.
Therefore, we can divide both sides by cos2x which yields
2tan2x−5tanx−8=−2sec2x
⇒4tan2x−5tanx−6=0
⇒(tanx−2)(4tanx+3)=0
Thus, x=nπ+tan−12,bπ+tan−1(4−3)
Given equation is (1−tanx)(1+sin2x)=1+tanx
⇒(1−tanx)(1+1+tan2x2tanx)=1+tanx
⇒(1−tanx)(1+tanx)2=(1+tanx)(1+tan2x)
⇒(1+tanx)[(1−tanx)(1+tanx)−(1+tan2x)]=0
⇒(1+tanx)(−2tan2x)=0
If tan2x=0⇒tanx=0⇒x=nπ
If 1+tanx=0⇒x=nπ−4π
where n∈I
Given equation is 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx
⇒4cos23xcos2x+2sin25xcos2x−2sin2xcos2x=0
⇒2cos2x[2cos23x+sin25x−sin2x]=0
⇒2cos2x[2cos23x+2cos23xsinx]=0
⇒4cos2xcos23x[1+sinx]=0
If cos2x=0⇒x=(2n+1)π
If cos23x=0⇒x=(2n+1)3π
If 1+sinx=0⇒x=nπ+(−1)n+12π
So the values in the given range are x=−π,−2π,−3π,3π,π
Given equation is 4cos2xsinx−2sin2x=3sinx
⇒sinx[4cos2x−2sinx−3]=0
⇒sinx[4−4sin2x−2sinx−3]=0
⇒sinx[4sin2x+2sinx−1]=0
If sinx=0⇒x=nπ
If 4sin2x+2sinx−1=0
sinx=4−1±5
If sinx=4−1+5⇒sinx=sin10π⇒x=nπ+(−1)n10π
If sinx=4−1−5⇒sinx=−sin54∘=sin(10−3π)
⇒x=nπ+(−1)n+1103π
Given equation is 2+7tan2x=3.25sec2x
⇒8+28tan2x=13sec2x=13+13tan2x
⇒15tan2x=5⇒tanx=±31
⇒x=nπ±6π
Given equation is cos2x+cos4x=2cosx
⇒cos4x+cos2x−2cosx=0
⇒2cos3xcosx−cosx=0
2cosx[cos3x−1]=0
If cosx=0⇒x=(2n+1)2π
If cos3x−1=0⇒3x=2nπ⇒x=32nπ
Given equation is 3tanx+cotx=5cosecx
⇒cosx3sinx+sinxcosx=sinx5
⇒sinx(3sin2x+cos2x)=5sinxcosx
⇒sinx(2sin2x−5cosx+1)=0
⇒sinx(2cos2x+5cosx−3)=0
⇒sinx(2cosx+3)(2cosx−1)=0
sinx=0 because that will make cosecx and cotx∞.
2cosx+3=0 because −1≤cosx≤1
∴2cosx−1=0⇒cosx=21⇒x=2nπ±3π
Given equation is 2sin2x=3cosx
⇒2cos2x+3cosx−2=0
⇒(2cosx−1)(cosx+2)=0
cosx=2∵−1≤cosx≤1
∴2cosx−1=0⇒x=2nπ±3π ∀ n∈I
0≤x≤2π∴x=3π,35π
Given equation is sin2x−cosx=41
⇒4sin2x−4cosx=1⇒4−4cos2x−4cosx=1
⇒4cos2x+4cosx−3=0
⇒(2cosx+3)(2cosx−1)=0
cosx=2∵−1≤cosx≤1
∴2cosx−1=0⇒x=2nπ±3π ∀ n∈I
0≤x≤2π∴x=3π,35π
Given equation is 3tan2x−2sinx=0
⇒3sin2x−2sinxcos2x=0
⇒3sin2x−2sinx+2sin3x=0
⇒sinx(2sin2x+3sinx−2)=0
⇒sinx(sinx+2)(2sinx−1)=0
sinx=−2∵−1≤sinx≤1
If sinx=0⇒x=nπ
If 2sinx−1=0⇒x=nπ+(−1)n6π
Given equation is sinx+sin5x=sin3x
⇒sin5x−sin3x+sinx=0
⇒2cos4xsinx+sinx=0
sinx(2cos4x+1)=0
If sinx=0⇒x=nπ ∀ x∈I
If 2cos4x+1=0⇒4x=2nπ±32π
x=2nπ±6π ∀ x∈I
Thus, x=0,π and x=6π,3π,32π,65π
Given equation is sin6x=sin4x−sin2x
⇒sin6x+sin2x−sin4x=0
⇒2sin4xcos2x−sin4x=0
⇒sin4x(2cos2x−1)=0
If sin4x=0⇒x=4nπ
If 2cos2x−1=0⇒cos2x=21⇒2x=2nπ±3π
⇒x=nπ±6π
Given equation is cos6x+cos4x+cos2x+1=0
⇒2cos5xcosx+2cos2x=0
⇒2cosx(cos5x+cosx)=0
⇒4cosxcos2xcos3x=0
If cosx=0⇒x=2nπ±2π
If cos2x=0⇒x=nπ±4π
If cos3x=0⇒x=32nπ±6π
Given equation is cosx+cos2x+cos3x=0
⇒(cosx+cos3x)+cos2x=0
⇒2cos2xcosx+cos2x=0
⇒cos2x(2cosx+1)=0
If cos2x=0⇒x=(2n+1)4π
If 2cosx+1=0⇒x=2nπ±32π
Given equation is cos3x+cos2x=sin23x+sin2x
⇒2cos25xcos2x−2sinxcos2x=0
⇒2cos2x[cos25x−sinx]=0
If cos2x=0⇒2x=(n+21)π
x=(2n+1)π
If cos25x=sinx=cos(2π−x)
⇒25x=2nπ±(2π−x)
⇒x=(4n+1)π/7,(4n−1)π/3
Thus, between 0 and 2π the values of x are 7π,75π,π,79π,713π.
Given equation is tanx+tan2x+tan3x=tanx.tan2x.tan3x
⇒tanx+tan2x=tan3x(tanxtan2x−1)
⇒1−tanxtan2xtanx+tan2x=−tan3x
⇒tan(x+2x)=−tan3x⇒2tan3x=0
⇒3x=nπ⇒x=3nπ
Given equation is tanx+tan2x+tanxtan2x=1
⇒tanx+tan2x=1−tanxtan2x
⇒1−tanxtan2xtanx+tan2x=1
⇒tan3x=tan4π
3x=nπ+4π⇒x=(4n+1)12π
Given equation is sin2x+cos2x+sinx+cosx+1=0
⇒2sinxcosx+2cos2x−1+sinx+cosx+1=0
⇒sinx(2cosx+1)+cosx(2cosx+1)=0
⇒(2cosx+1)(sinx+cosx)=0
If cosx=−21⇒x=2nπ±32π
If sinx+cosx=0⇒tanx=−1⇒x=nπ−4π
We have to prove that sinx+sin2x+sin3x=cosx+cos2x+cos3x
⇒(sinx+sin3x)+sin2x=(cosx+cos3x)+cos2x
⇒2sin2xcosx+sin2x=2cos2xcosx+cos2x
⇒sin2x(2cosx+1)=cos2x(2cosx+1)
⇒(2cosx+1)(sin2x−cos2x)=0
If 2cosx+1=0⇒x=2nπ±32π
If sin2x−cos2x=0⇒tan2x=1=tan4π⇒x=2nπ+8π
Given equation is cos6x+cos4x=sin3x+sinx
⇒2cos5xcosx=2sin2xcosx
⇒cosx(cos5x−sin2x)=0
If x=0⇒x=2nπ±2π
If cos5x=sin2x⇒cos5x=cos(2π−2x)
⇒5x=2nπ±(2π−2x)
Taking +ve sign 7x=2nπ+2π⇒x=(4n+1)14π
Taling -ve sign 3x=2nπ−2π⇒x=(4n−1)6π
Given equation is sec4x−sec2x=2
⇒cos2x−cos4x=2cos2xcos4x where cos2x,cos4x=0
⇒cos2x−cos4x=cos6x+cos2x
⇒cos6x+cos4x=0⇒2cos5xcosx=0
If cos5x=0⇒5x=2nπ±2π⇒x=52nπ±10π
If cosx=0⇒x=2nπ±2π
Given equation is cos2x=(2+1)(cosx−21)
⇒(2cos2x−1)=22+1(2cosx−1)
⇒(2cosx−1)(2cosx+1−1−21)=0
⇒(2cosx−1)(2cosx−1)=0
If 2cosx−1=0⇒x=2nπ±4π
If 2cosx−1=0⇒x=2nπ±3π
Given equation is 5cos2x+2cos22x+1=0
⇒10cos2x−5+cosx+2=0[∵cos2x=2cos2x−1]
⇒10cos2x+cosx−3=0
⇒(2cosx−1)(5cosx+3)=0
If cosx=1/2⇒x=3π[∵−π≤x≤π]
If 5cosx+3=0⇒x=π−cos−153
Given equation is cotx−tanx=secx
⇒cosx(cos2x−sin2x)=sinxcosx
⇒cosx(2sin2x+sinx−1)=0
⇒cosx(2sinx−1)(sinx+1)=0
cosx=0 and sin=−1 because that will render original equation meaningless.
∴2sinx−1=0⇒x=nπ+(−1)n6π
Given equation is 1+secx=cot22x
⇒cosx1+cosx=sin22xcos22x
⇒2sin22xcos22x=cosxcos22x
⇒cos22x(2sin22x−cosx)=0
⇒cos22x(1−2cosx)=0
If cos2x=0⇒2x=nπ+2pi⇒x=(2n+1)π
If 1−2cosx=0⇒x=2nπ±3π
Given equation is cos3xcos3x+sin3xsin3x=0
⇒(4cos3x−3cosx)cos3x+(3sinx−4sin3x)sin3x=0
⇒3(sin4x−cos4x)−4(sin6x−cos6x)=0
⇒3(sin2x−cos2x)−4(sin2x−cos2x)(sin4x+cos4x+sin2xcos2x)=0
⇒cos2x[−3+4{sin2x(sin2x+cos2x)+cos4x}]=0
⇒cos2x[4cos4x−4cos2x+1]=0
⇒cos2x(2cos2x−1)2=0
⇒cos32x=0
⇒cos2x=0
2x=nπ+2π⇒x=(2n+1)4π
Given equation is sin3x+sinxcosx+cos3x=1
⇒sin3x+cos3x+sinxcosx−1=0
⇒(sinx+cosx)(sin2x−sinxcosx+cos2x)+(sinxcosx−1)=0
⇒(1−sinxcosx)(sinx+cosx−1)=0
If 1−sinxcosx=0⇒sin2x=2 which is not possible.
∴sinx+cosx−1=0⇒21sinx+21cosx=21
⇒cos(x−4π)=cos4π
⇒x−π/4=2nπ±π/4=2nπ,2nπ+π/2
Given equation is sin7x+sin4x+sinx=0
⇒2sin4xcos3x+sin4x=0
⇒sin4x(2cos3x+1)=0
If sin4x=0⇒x=nπ/4⇒x=π/4 ∀0≤x≤π/2
If cos3x=−1/2⇒x=92π,94π ∀0≤x≤π/2
Given equation is sinx+3cosx=2
Dividing both sides by 2 [we arrive at this no. by squaring and adding coefficients of sinx and cosx
and then taking square root]
⇒21sinx+23cosx=21
⇒sin6πsinx+cos6πcosx=cos4π
⇒cos(x−6π)=cos4π
⇒x−6π=2nπ±4π
⇒x=2nπ±125π,2nπ−12π
We have to find minimum value of 27cos2x.81sin2x
27cos2x.81sin2x=33cos2x+4sin2x
It will be minimum when 3cos2x+4sin2x will be minimum.
Dividing and multiplying with 5, we get
5(53cos2x+54sin2x)
⇒5cos(2x−y) where tany=34
For minimum value cos(2x−y)=−1=cosπ⇒2x−y=2nπ±π
x=22nπ±π+tan−134,n∈I
Minimum value will be 3−5=2431
Given 3cos2x=1⇒cos2x=31
⇒tan2x=1+cos2x1−cos2x=21
Given 32tan8x=2cos2y−3cosy
⇒32.241=2cos2y−3cosy
⇒2cos2y−3cosy−2=0
(2cosy+1)(cosy−2)=0
∵cosy=2⇒2cosy+1=0
⇒y=2nπ±32π
Given equation is (1−tanx)(1+tanx)sec2x+2tan2x=0
⇒(1−tan2x)(1+tan2x)+2tan2x=0
⇒1+2tan2x=tan4x
Clearly, tan2x=3 is the solution of the above equation.
⇒tanx=±3⇒x=nπ±3π
Values of x in the given interval are ±3π.
Given equation is ecosx=e−cosx+4.
⇒e2cosx−4ecosx−1=0
⇒ecosx=2±5
If ecosx=2+5 then cosx>1 which is not possible.
If ecosx=2−5 then cosx is an imaginary number. Thus, no solutions for given equation are
possible.
Given equation is (1+tanx)(1+tany)=2
⇒1+tanx+tany+tanxtany=2
⇒tanx+tany=1−tanxtany
⇒1−tanxtanytanx+tany=1
⇒tan(x+y)=tan4π
⇒x+y=nπ±4π
Given equation is tan(cotx)=cot(tanx)
⇒tan(cotx)=tan(2π−tanx)
⇒cotx=nπ+(2π−tanx)
⇒tanx+cotx=nπ+2π
⇒sinx+cosxsin2x+cos2x=(2n+1)π/2
⇒sin2x1=(2n+1)π/4⇒sin2x=(2n+1)π4
We have atanz+bsecz=c
⇒c−atanz=bsecz⇒(c−atanz)2=b2sec2z
⇒(a2−b2)tan2x−2actanz+(c2−b2)=0
Given that x and y are roots of original equation so tanx and tany will be roots of last
equation.
⇒tanx+tany=a2−b22ac and tanxtany=a2−b2c2−b2
⇒tan(x+y)=1−tanxtanytanx+tany=a2−c22ac
Given sin(πcosx)=cos(πsinx)
⇒πcosx=2π−πsinx
⇒sinx+cosx=21
Fividing both sides by 2
⇒2sinx+2cosx=221
cos(x±4π)=221
Squaring both sides
⇒sin2x+cos2x+2sinxcosx=41
⇒sin2x=−43
Given equation is tan(x+100∘)=tan(x+50∘).tanx.tan(x−50∘)
⇒tanxtan(x+100∘)=tan(x+50∘)tan(x−50∘)
⇒cos(x+100∘)sinxsin(x+100∘)cosx=cos(x+50∘)cos(x−50∘)sin(x+50∘)sin(x−50∘)
Appplying componendo and dividendo
⇒sin(x+100∘)cosx−cos(x+100∘)sinxsin(x+100∘)cosx+cos(x+100∘)sinx=sin(x+50∘)sin(x−50∘)−cos(x+50∘)cos(x−50∘)sin(x+50∘)sin(x−50∘)+cos(x+50∘)cos(x−50∘)
⇒sin100∘sin2x+100∘=−cos2xcos100∘
⇒−2sin(2x+100∘)cos2x=2sin100∘cos100∘
⇒−sin(4x+100∘)−sin100∘=sin200∘
⇒sin(4x+100∘)=−2sin1506∘.cos50∘=−cos50∘=sin220∘
Thus, minimum value of x is 30∘.
We have to find x for which tan2x+sec2x=1
⇒tan2x+1−tan2x1+tan2x=1
⇒tan2x−tan4x+1+tan2x=1−tan2x
⇒tan4x−3tan2x=0
⇒tan2x(tan2x−3)=0
If tan2x=0⇒x=nπ
If tan2x=3⇒x=nπ±3π
Clearly, for all these values tanx and sec2x are defined.
Given equation is secx−cosecx=34
⇒cosx1−sinx1=34
⇒3(sinx−cosx)=4sinxcosx
Squaring both sides
⇒9(sin2x+cos2x−2sinxcosx)=16sin2xcos2x
⇒9(1−sin2x)=4sin22x
⇒4sin22x+9sin2x−9=0
⇒(sin2x+3)(4sin2x−3)=0
sin2x=3∴4sin2x=3⇒x=2nπ+(−1)n/2.sin−143
Given equation is sin2x−12(sinx−cosx)+12=0.
⇒1−sin2x+12(sinx−cosx)−13=0
⇒(sinx−cosx)2+12(sinx−cosx)−13=0
⇒(sinx−cosx−1)(sinx−cosx+13)=0
Clearly, sinx−cosx+13=0
∴sinx−cosx=1
⇒21sinx−21cosx=21
⇒sin(x−4π)=sin4π
⇒x=nπ+(−1)n4π+4π
Given equation is cos(psinx)=sin(pcosx)
⇒psinx=2nπ±(2π−pcosx)
Taking positive sign
psinx=2nπ+2π−pcosx
⇒p(sinx+cosx)=(4n+1)2π
⇒sinx+cosx=2p(4n+1)π
⇒21sinx+21cosx=22p(4n+1)π
⇒sin(x+π/4)=22p(4n+1)p
Clealry, 22p(4n+1)π≤1
⇒p≥22(4n+1)π
For smallest positive value n=0∴p=22π
Taking negative sing
psinx=2nπ−2π+pcosx
⇒p(cosx−sinx)=−2nπ+2π
Proceeding similarly, p≥22(−4n+1)π
Smallest positive value of p=22π
Given equation is cosx+3sinx=2cos2x
⇒2cosx+23sinx=cos2x
⇒cos(x−3π)=cos2x
⇒x−3π=2nπ±2x
Taking positive sign, x=−2nπ−3π
Taking negative sing x=32nπ+9π
Given equation is tanx+secx=3
⇒cosxsinx+cosx1=3
⇒3cosx−sinx=1
Dividing both sides by 2, we get
23cosx−21sinx=21
⇒cos(x+6π)=cos3π
⇒x+6π=2nπ±3π
Taking positive sign
x=2nπ+6π
Taking negative sign
x=(4n−1)2π
Values of x between 0 and 2π are 6π,23π
However, when x=23π,cosx=0 which will be rejected.
∴x=6π
Given equation is 1+sin3x+cos3x=23sin2x
⇒1+sin3x+cos3x=3sinxcosx
⇒1+sin3x+cos3x−3sinxcosx=0
⇒(1+sinx+cosx[(1−sinx)2+(sinx−cosx)2+(cosx−1)2]=0[∵a3+b3+c3−3abc=(a+b+c).21[(a−b)2+(b−c)2+(c−a)3]]
If 1+sinx+cosx=0⇒cosx+sinx=−1
⇒21cosx+21sinx=2−1
⇒cos(x−4π)=cos43π
⇒x−4π=2nπ±43π⇒x=2nπ+4π±43π
else sinx=1,sinx=cosx,cosx=1 which is not possible.
Given equation is (2+3)cosx=1−sinx
⇒cosx1−sinx=2+3
⇒cosx1−sinx.1+sinx1+sinx=(2+3).2−32−3
⇒1+sinxcosx=2−31 [note that we have cancelled cosx here]
⇒cosx1+sinx=2−3
⇒cosx1+sinx+1−sinx=2+3+2−3
⇒cosx2=4⇒cosx=21⇒x=2nπ±3π
Since we have cancelled cosx one of the possible solutions is cosx=0⇒x=2nπ+2π
Given equation is tan(2πsinx)=cot(2πcosx)
⇒2πsinx=2π−2πcosx
⇒sinx=1−cosx
⇒sinx+cosx=1
⇒21sinx+21cosx=21
⇒cos(x−4π)=cos4π
⇒x−4π=2nπ±4π
Taking positive sign x=2nπ+π/2
Taking negative sign x=2nπ
Given equation is 8cosxcos2xcos4x=sinxsin6x
⇒8sinxcosxcos2xcos4x=sin6x
⇒4sin2xcos2xcos4x=sin6x
⇒2sin4xcos4x=sin6x⇒sin8x=sin6x
⇒2cos7xsinx=0
If cos7x=0⇒7x=(2n+1)2π⇒x=(2n+1)14π
sinx cannot be zeor as it is in denominator.
Given equation is 3−2cosx−4sinx−cos2x+sin2x=0
⇒3−2cosx−4sinx−(1−2sin2)+2sinxcosx=0
⇒2(sin2x−2sinx+1)+2cosx(sinx−1)=0
⇒(sinx−1)(2cosx+2sinx−2)=0
If sinx−1=0⇒x=nπ+(−1)n2π
If sinx+cosx=1
Like previous examples x=2nπ,2nπ+2π
Given equation is sinx−3sin2x+sin3x=cosx−3cos2x+cos3x
⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x
⇒sin2x(2cosx−3)=cos2x(2cosx−3)
∵2cosx=3∴sin2x=cos2x
⇒21cos2x−21sin2x=0
⇒2x+π/4=nπ⇒x=nπ/2+π/8
Given equation is sin2xtanx+cos2xcotx−sin2x=1+tanx+cotx
⇒cosxsin3x+sinxcos3x−sin2x=1+cosxsinx+sinxcosx
⇒sinxcosxsin4x+cos4x−sin2x=sinxcosxsinxcosx+sin2x+cos2x
⇒sinxcosx1−2sin2xcos2x−sin2x=1+sinxcosx1
⇒−2sinxcosx−sin2x=1
⇒sin2x=−1/2⇒2x=nπ+(−1)n+16π
⇒x=2nπ+(−1)n+112π
sinx=−21⇒x=67π,611π
tanx=31⇒x=6π,67π
So common value is 67π
Period of sinx is 2π and period of tanx is nπ so common period is 2nπ
Thus, most general value of x is 2nπ+67π
tan(x−y)=1⇒x−y=4π,45π
sec(x+y)=32⇒x+y=6π,611π
Since x and y are positve so x+y>x−y
When x−y=4π and x+y=611π
x=2425πy=2419π
When x−y=55π and x+y=611π
x=2437π,y=247π
General Solution:
tan(x−y)=1⇒x−y=mπ+4π
sec(x+y)=32⇒x+y=2nπ±6π
x=(2m+n)2π+8π±12π
y=(2m−n)2π−8pi±12π
Given curves are y=cosx and y=sin3x
For intersection point both the equations must be satisfied, thus
cosx=sin3x=cos(2π−3x)
⇒x=2nπ±(2π−3x)
⇒x=2nπ+8π,nπ+4π
So in the given interval values of x are 8π,−83π,4π.
From first equation rsinx=3⇒r=sinx3
Substituting this value in the second equagtion, we get
sinx3+4sinx=2(3+1)
⇒4sin2x−23sinx−2sinx+3=0
⇒(2sinx−3)(2sinx−1)=0
If 2sinx−3=0⇒x=nπ+(−1)n3π
If 2sinx−1=0⇒x=nπ+(−1)n6π
Thus, for o≤x≤2π,x=6π,3π,32π,65π
Given x−y=4π and cotx+coty=2
From second equation sinxcosx+sinycosy=2
⇒sin(x+y)=2sinxsiny=cos(x−y)−cos(x+y)=cos4π−cos(x+y)
⇒sin(x+y)+cos(x+y)=cos4π
⇒21sin(x+y)+21cos(x+y)=21=cos3π
⇒cos(x+y−π/4)=cos3π
⇒x+y−4π=2nπ±3π
x+y=2nπ±3π+4π
For n=0,x+y=127π[∵x,y>0]
⇒x=125π,y=6π
Given equations are 5sinxcosy=1 and 4tanx=tany
⇒4cosxsinx=cosysiny
⇒4sinxcosy=sinycosx⇒54=sinycosx
Thus, sinxcosy+cosxsiny=1
⇒sin(x+y)=sin2π
⇒x+y=nπ+(−1)n2π
and sinxcosy−cosxsiny=−53
⇒sin(x−y)=−53
⇒x−y=nπ+(−1)ksin−15−3
∴x=21[(n−k)π+(−1)n2π+(−1)ksin−15−3]
and y=21[(n−k)π+(−1)n2π−(−1)ksin−15−3]
Given equations are rsinx=3 and r=4(1+sinx)
⇒r=sinx3
Substituting this in second equation
3=4sinx+4sin2x⇒4sin2x+4sinx−3=0
⇒(2sinx+3)(2sinx−1)=0
∵2sin=−3∴2sinx=1
x=nπ+(−1)n6π
Thus, values of x between 0 and 2π are π/6 and 5π/6.
Given sinx=siny and cosx=cosy
Clearly, one of the solutions is x=y
x=nπ+(−1)ny and x=2nπ±y
∴x−y=2nπ is the only other solution.
Given equations are cos(x−y)=21 and sin(x+y)=21
x−y=3π
x+y=6π,65π
For positive values of x and y,x+y>x−y
∴x+y=65π
2x=67π⇒x=127π
⇒y=4π
General values:
x−y=2nπ±3π
x+y=mπ+(−1)m6pi
∴x=(2n+m)2π±6π+(−1)m12π
and y=(m−2n)2π∓6π+(−1)m12π
Given curves are y=cos2x and y=sinx
For them to intersect both equations must be satisfied together. Thus,
cos2x=sinx
⇒2sin2x+sinx−1=0
⇒(2sinx−1)(sinx+1)=0
If 2sinx−1=0⇒x=6π[∵−2π≤x≤2π]
y=21. So the point is (6π,21)
If sinx=−1⇒x=−2π
So the point is (−2π,−1)
Given equations are cosx=21 and tanx=−1
⇒x=2nπ±4π and x=mπ−4π
2nπ±4π lies in first and fourth quadrant while mπ−4π lies in second and fouth
quadrant.
Thus, most general value will be 2kπ+47π.
Given equations are tanx=3 and cosecx=−32
⇒x=nπ+3π and x=mπ+(−1)m+13π
nπ+3π lies in first and third quadrant while mπ+(−1)m+13π lies in third and
fourth quadrant.
Therefore common general value is 2nπ+34π.
Since x,y satisfies 3cosz+4sinz=2, therefore
3cosx+4sinx=2 and 3cosy+4siny=2
Subtracting, we get
3(cosx−cosy)+4(sinx−siny)=0
⇒6sin2x+ysin2y−x+8cos2x+ysin2x−y=0
⇒2sin2x−y[4cos2x+y−3sin2x+y]=0
sin2x−y=0∵x=y
∴tan2x+y=34⇒sin(x+y)=2524
Let y=2cos22xsin2x=x2+x−2
y=(1+cosx)sin2x=[<2].[≤1][∵0<x≤2π]
y<2
y=x2+x−2=(x−x1)2+2≥2
Thus no solution is possible.
Given equation is y=1−2isinx3+2isinx
=1−2isinx3+2isinx.1+2isinx1+2isinx
=1+4sin2x3−4sin2x+i1+4sin2x8sinx
For y to be purely real, imaginary part has to be zero.
⇒sinx=0⇒x=nπ
For y to be purely imaginary, real part has to be zero.
⇒sinx=±23
x=nπ+(−1)n(±3π)
Given equation is a2−2a+sec2π(a+x)=0
⇒a2−2a+1+tan2π(a+x)=0
⇒(a−1)2+tan2π(a+x)=0
For L.H.S. to be zero both terms must be zero. Thus, (a−1)2=0
⇒a=1 and tan2π(1+x)=0
⇒π(1+x)=nπ
x=n−1=m where m∈I
Given equation is 81+∣cosx∣+cos2x+∣cos3x∣+… to ∞=43
⇒1+∣cosx∣+cos2x+∣cos3x∣+… to ∞=2
This is a geomtric progression with common ratio ∣cosx∣. We know that ∣cosx∣≤1 but ∣cosx∣=1
will render the previous equation meaningless(∞=2)
⇒1−∣cosx∣1=2⇒∣cosx∣=21
cosx=±21⇒x=2nπ±3π,2nπ±32π
The values of x in the given interval are ±3π,±32π
Given equation is ∣cosx∣sin2x−23sinx+21=1
Taking log of both sides,
(sin2x−23sinx+21)log∣cosx∣
If sin2x−23sinx+21=0
⇒(sinx−1)(2sinx−1)=0
When sinx=1⇒∣cosx∣=0 which is not a solution because it means 00 for original equation.
If 2sinx−1=0⇒x=nπ+(−1)n6π
If log∣cosx∣=0⇒cosx=±1
x=2nπ,2nπ±π
Given equation is 3sin2x+2cos2x+31−sin2x+2sin2x=28.
⇒3sin2x+2cos2x+33−sin2x+2cos2x=28
⇒3sin2x+2cos2x+3sin2x+2cos2x33=28
Let 3sin2x+2cos2x=y
⇒y+y27=28
⇒(y−1)(y−27)=0
If y=27⇒sin2x+2cos2x=3 which is not possible for any value of x.
If y=1⇒sin2x+2cos2x=0⇒2cosx(sinx+cosx)=0
cosx=0⇒x=2nπ+2π
If sinx+cosx=0⇒tanx=−1=tan(−4π)
x=nπ−4π
Given 2cos2x+sinx≤2⇒2(1−sin2x)+sinx≤2
⇒−2sin2x+sinx≤0
⇒sinx(2sinx−1)≥0
⇒sinx≤0 or sinx≥21
⇒π≤x≤2π or 6π≥x≤65π
Also, 2π≤x≤23π from second condition.
Thus intersection of these two will be the solution.
⇒A∩B={x/π≤x≤23π,2π≤x≤65π}
Given equation is sinx+cosx=1+sinxcosx
Squaring sin2x+cos2x+2sinxcosx=1+sin2xcos2x+2sinxcosx
⇒1+sin2x=1+sin2x+sin2xcos2x
⇒sinx=0 or cosx=0
x=nπ or x=2nπ±2π
Given sin6x+cos4x+2=0
⇒sin6x=−1 and cos4x=−1 and both must be satisfied simultaneously.
⇒6x=2nπ+23π⇒x=nπ/3+π/4
⇒4x=2nπ+π⇒x=nπ/2+π/4
Thus, general solution is mπ+π/4
Let n=3 then
sin2x+sin3x=2
This will be true if sin2x=1 and sin3x=1 simultaneously.
⇒x=4π,45π and x=6π,65π,69π
Clearly there is no solution for n=3 and thus there will be no solution for higher vallues of n.
Given equation is cos7x+sin4x=1
cos7x≤cos2x and sin4x≤sin2x
∴cos7x+sin4x≤1
The equality is satisfied only when cos7x=cos2x and sin4x=sin2x
⇒x=(2n+1)2π or x=2nπ
Given equation is sin3x−sinx−2sin2x+3=0
⇒2sinxcos2x−4sinxcosx+3=0
⇒sinx(2cos2x−4cosx)+3=0
⇒sinx(4cos2x−4cosx−2)+3=0
⇒sinx(2cosx−1)2+3(1−sinx)=0
In the interval 0≤x≤π,1−sinx≥0
Also,, (2cosx−1)2≥0
Thus above equation holds true only if sinx(2cosx−1)2=0 and 1−sinx=0
sinx=1⇒cosx=0⇒sinx(2cosx−1)2=1=0
Thus all the equations are not satisfied simultaneously. Hence, no solution is possible.
Given equation is sinx+cos(k+x)+cos(k−x)=2
⇒sinx+2coskcosx=2
Dividing both sides by 1+4cos2k
1+4cos2ksinx +1+4cos2k2coskcosx=1+4cos2k2
L.H.S. if of the form cos(x+y) and thus for solutions to exist
2≤1+4cos2k⇒cos2k≥43
⇒1−cos2k≤41⇒sin2k≤41
⇒(sink+21)(sink−21)≤0
⇒−21≤sink≤21
⇒nπ−6πleqk≤nπ+6π
Given equations are xcos3y+3xcosy.sin2y=14 and xsin3y+3xcos2ysiny=13
Clearly x=0, dividing both the equations
sin3y+3cos2ysinycos3y+3cosysin2y=1314
By componendo and dividendo, we get
(cosy−sinycosy+siny)3=27
⇒cosy−sinycosy+siny=3
Dividing numerator and denominator by cosy, we get
1−tany1+tany=3
⇒tany=21
When y is in first quadrant siny=51,cosy=52
When y is in third quadrant siny=−51,cosy=−52
Thus, when y is in first quadrant x=55
and when y is in third quadrant x=−55.
Given equation is sin4x+cos4x+sin2x+α=0
⇒(sin2x+cos2x)2−2sin2xcos2x+sin2x+α=0
⇒sin22x−2sin2x−2(α+1)=0
The above equation is a quadratic equation in sin2x,
∴sin2x=22±4+8(α+1)=1±2α+3
sin2x=1+2α+3 is rejected because it is greater than 1 and if 2α+3=0 then
it will be included in follwing.
∴sin2x=1−2α+3
For sin2x to be real 2α+3≥0
⇒α≥2−3
Also, −1≤sin2x≤1⇒α≤21
Thus possible solutions are −23≤α≤21
The general solution is x=2nπ+(−1)n2sin−1()1−2α+3
Given equation is tan(x+4π)=2cotx−1
⇒1−tanxtan4πtanx+tan4π=tanx2−1
⇒(1+tanx)tanx=(1−tanx)(2−tanx)
⇒4tanx=2⇒tanx=21
x=nπ+tan−121
For tan(x+4π) to be defined.
x+4π= odd multiple of 2π
x+4π=(2n+1)2π
Also for cotx to be defined. x= a multiple of π
⇒x=nπ
We have restrocted the domain above but there many be a root loss. So we need to check if x=(2n+1)2π
satisfies the original equation.
tan(nπ+2π+4π)=−1
2cotx−1=−1
Thus, (2n+1)2π is a solution of the equation.
Given equation is acos2z+bsin2z=c
⇒bsin2z=c−acos2z⇒b2sin22z=(c−acos2z)2
⇒b2(1−cos22z)=c2+a2cos22z−2accos2z
⇒(a2+b2)cos22z−2accos2z+c2−b2=0
⇒(a2+b2)(2cos2z−1)2−2ac(2cos2z−1)+c2−b2=0
⇒4(a2+b2)cos4z−4(a2+b2+ac)cos2z+(a+c)2=0
This is a quadratic equation in cos2z, and sum of roots =4(a2+b2)4(a2+b2+ac)
Now of x and y satisfy the equation then
cos2x+cos2y=4(a2+b2)4(a2+b2+ac)
Given equation is sin(x+y)=ksin2x
⇒sinxcosy+cosxsiny=ksin2x
⇒1+tan2yxstan2xcosy+1+tan22x1−tan22xsiny=k.2.1+tan22x2tan2x1+tan22x1−tan22x
Let tan2x=t, then
2t(1+t2)cosy+(1−t2)(1+t2)siny=4kt(1−t2)
⇒siny.t4−(4k+2cosy)t3+(4k−2cosy)t−siny=0
If x1,x2,x3,xy are roots of this equation then
∑x1=x1+x2+x3+x4=siny4k+2cosy=s1
∑x1x2=x1x2+x2x3+…=0=s2
∑x1x2x3=siny2cosy−4k=s3
x1x2x3x4=siny−siny=−1=s4
Now, tan(2x1+x2+x3+x4)=1−s2+s4s1−s3
=siny.08k=tan2π
x1+x2+x3+x4=2nπ+π
Given equation is secx+cosecx=c
⇒sinx+cosx=csinxcosx
Squaring, we get
1+sin2x=4c2sin2x
1+1+tan2x2tanx=4c2(1+tan2x2tanx)2
Let tanx=t, then
1+1+t22t=4c2.(1+t2)24t2
⇒(1+t+t2)2=t2(c2+1)
Case I: When c2<8
⇒(1+t+t2)<9t2
⇒(t2+4t+1)(t2−2t+1)<0
t2−2t+1>0∵(t−1)2>0
∴t2+4t+1<0
⇒2−3<t<−2+3
⇒t is negative i.e. tanx will be negative.
Thus, it will have two values between 0 and 2π.
Case II: When c2>8
⇒(t2+4t+1)(t−1)2>0
⇒−∞<t<−2−3 or −2+3<t<1 or 1<t<∞
Thus, t will be negative and positve and hence tanx will be positive and negative.
⇒x will have four roots between 0 and 2π.
For non-trivial solutions
λ1−1sinαcosαsinαcosαsinα−cosα=0
⇒λ(−cos2α−sin2α)+sinα(−sinα+cosα)+cosα(sinα+cosα)=0
⇒λ=cos2α+sin2α
⇒2λ=2cos2α+2sin2α
Clearly. ∣λ∣≤2
When λ=1⇒cos(2α−4π)=cos4π
⇒2α−4π=2nπ±4π
⇒α=nπ,nπ+4π
Given equation is cosxcosycos(x+y)=−81
⇒8cosxcosycos(x+y)+1=0
⇒4[cos(x+y)+cos(x−y)]cos(x+y)+1=0
⇒4cos2(x+y)+4cos(x−y)cos(x+y)+1=0
This is a quadratic equation in cos(x+y)
For real value of cos(x+y),D≥0
⇒16cos2(x−y)−16≥0
⇒sin2(x−y)≤0
⇒sin2(x−y)=0⇒x=y
⇒4cos22x+3cos2x+1=0
⇒(2cos2x+1)2=0
⇒cos2x=−21⇒2α=32π⇒x=3π
∴x=y=3π
Given sinxcosxcosxcosxsinxcosxcosxcosxsinx=0
C1⇒C1+C2+C3 and taking that out
⇒(sinx+2cosx)111cosxsinxcosxcosxcosxsinx=0
⇒(sinx+2cosx)100cosxsinx−cosx0cosx0sinx−cosx=0
⇒(sinx+2cosx)(sinx−cosx)2=0
⇒ either tanx=1 or tanx=−2
For −4π≤x≤4πtan=−2
∴tanx=1⇒x=4π
Given 3sin2x−7sinx+2=0.
⇒(sinx−2)(3sinx−1)=0
∵sin=2∴sinx=31
⇒x will have six values between [0,5π]
Given equation is y+cosx=sinx
⇒2y=2sinx−2cosx
⇒2y=−cos(x−4π)
−1≤cos(x−4π)≤1
⇒−2≤y≤2
If y=1, then
cos(x+4π)=−1/2=−cos4π=43π,45π[because0≤x≤2π]
x=2π,π
Given equation is ∑r=1nsin(rx)sin(r2x)=1
⇒tr=212sin(rx)sin(r2x)=21[cos(r2−r)x−cos(r2+r)x]
⇒t1=21[cos0−cos2x]
t2=21[cos2x−cos6x]
t3=21[cos6x−cos12x]
…
tn=21[cos(n2−n)x−cos(n2+n)x]
Adding all these
∑r=1nsin(rx)sin(r2x)=21[cos0−cos(n2+n)x]=1
⇒cos(n2+n)x=−1=cosπ
x=n(n+1)(2m+1)π
Given equation is sinx(sinx+cosx)=a
⇒sin2x+sinxcosx=a
⇒sin2xcos2x=a2+sin4x−2asin2x
⇒2sin4x−sin2x(2a+1)+a2=0
This is a quadratic equation in sin2x which is real so D≥0
⇒(2a+1)2−8a2≥0
⇒4a2−4a−1≤0
⇒21(1−2)≤a≤21(1+2)
Given equation is 2cos26x2+x=2x+2−x
−1≤cos6x2+x≤1
⇒0≤cos26x2+x≤1
Also, becasue A.M. ≥ G.M.
22x+2−x≥2x.2−x=1
⇒cos26x2+x=1=cos0
⇒x=0
Given inequality is sinx≥cos2x
⇒sinx≥1−2sin2x
⇒2sin2x+sinx−1≥0
⇒(2sinx−1)(sinx+1)≥0
Limiting value of sinx+1=0⇒sinx=−sin2π
x=2nπ−2π
Also, 2sinx−1≥0⇒sinx>21⇒2nπ+6π≤x≤2nπ+65π
Given equation is (cos4x−2sinx)sinx+(1+sin4x−2cosx)cosx=0
⇒sinxcos4x−2sin2x+cosx+cosxsin4x−2cos2x=0
sin(x+4x)+cosx=2
This is possible only if sin45x=1 and cosx=1 simultaneously.
45x=2nπ+2π and x=2mπ
x=58nπ+2π and x=2mπ
Thus, general solution is (8n+2)π
Given equation is 2(sinx−cos2x)−sin2x(1+2sinx)+2cosx=0
⇒2sinx−sin2x−2cos2x−2sinxsin2x+2cosx=0
⇒2sinx−sin2x−2cos2x−(cosx−cos3x)+2cosx=0
⇒2sinx(1−cosx)+4cos3x−3cosx+cosx−2(2cos2x−1)=0
⇒2sinx(1−cosx)−4cos2x(1−cosx)+2(1−cosx)=0
⇒(1−cosx)[2sinx−4(1−sin2x)+2]=0
⇒cosx=1 or sinx−2(1−sin2x)+1=0
x=2nπ or (2sinx−1)(sinx+1)=0
x=2nπ or sinx=21 or sinx=−1
x=2nπ,nπ+(−1)n6π,nπ−(−1)n2π
Given equation is sin32x+πsin2x=0
This is true if sin2x=0 and sin32x+π=0
2x=nπ and 32x+π=mπ
x=nπ/2 and x=(3m−1)π/2=nπ/2⇒n=3m−1
Given equation is 3tan2x−4tan3x=tan23xtan2x
⇒3tan2x−3tan3x=tan3x+tan23xtan2x
⇒3(tan2x−tan3x)=tan3x(1+tan3xtan2x)
⇒−3tan(2x−3x)=tan3x⇒tan3x+3tanx=0
Let tanx=t, then 3t+1−3t23t−t3=0
⇒6t−10t3=0
t=0 or t=±3/5
x=nπ or x=nπ±tan−13/5
Given equation is 1+sin2x=2cos2x
⇒sin2x+cos2x+2sinxcosx=2cos2x
⇒sinx+cosx=2cos2x
⇒2sinx+2cosx=cos2x
⇒cos(x−4π)=cos2x
⇒x−4π=2nπ±2x
Now it is trivial to find x
Given equation is 1+sin2ax=cosx
This is only possible if sin2ax=0 and cosx=1 simultaneously.
Thus, x=0 is the only solution because a is irrational.
For non-trivial solutions
sin3θcos2θ2−147137=0
Applying C2⇒C2+C3
⇒sin3θcos2θ20714137=0
⇒7sin3θ+14cos2θ−14=0
⇒3sinθ−4sin3θ+2−4sin2θ+2=0
⇒sinθ(4sin2θ+4sinθ−3)=0
⇒sinθ(2sinθ+3)(2sinθ−1)=0
2sinθ+3=0
∴sinθ=0,2sinθ−1=0
⇒θ=nπ,nπ+(−1)n6π
Given equation is sinx+sin8π(1−cosx)2+sin2x=0
⇒sinx+sin8π1−2cosx+cos2x+sin2x=0
⇒sinx+sin8π2−2cosx=0
⇒2sin2xcos2x+sin8π2sin2x=0
⇒2sin2x(cos2x+sin8π)=0
If sin2x=0⇒x=2nπ and cos2x=−sin8π=sin89π
x=2nπ is not valid for given range. ∴2x=2nπ±85π
In the given range x=411π is the only solution.
tanx−tan2x>0⇒tanx>0,tanx<1 x∈(0,4π)
∣sinx∣<21⇒−21<sinx<21
x∈(0,6π) and x∈(π,67π)
Clearly, A∩B=x∈(0,6π)∪x∈(π,67π)
Given equation is 2sin2x1y2−2y+2≤2
y2−2y+2=(y−1)2+1≥1
Thus, 2sin2x1leq2 for equality to be satisfied.
If ∣sinx∣<1 then equality will not hold true.
∴∣sinx∣=1⇒x=2π,23π
And thus y−1=0⇒y=1
Given ∣tanx∣=tanx+cosx1
If tanx=tanx+cosx1⇒secx=0 which is not possible.
∴−tanx=tanx+cosx1⇒sinx=−21
∴x=67π,611π in the given interval.
Given equation is logcosxsinx+logsinxcosx=2
Let y=logcosxsinx, then
y+y1=2⇒(y−1)2=0⇒y=1
⇒sinx=cosx⇒x=4π
Given equation is sinxcosx+21tanx≥1
⇒2sin2x+2tanx≥1
⇒1+tan2x2tanx+tanx≥2
⇒(tanx−1)(tan2x−tanx+2)≥0
tan2x−tanx+2≥0 ∀ x
⇒tanx≥1
x∈(nπ+π/4,nπ+π2)
Given equation is tanxcos2x=cotxsinx
⇒(sinx)cos2x+sinx=(cosx)cos2x+sinx
Case I: sinx=cosx⇒x=nπ+4π
Case II: cos2x+sinx=0⇒sin2x−sinx−1=0
sinx=21±5 but 21+5>1 so it is rejected.
⇒sinx=21−5=siny (say)
x=nπ+(−1)ny
Given equation is x2+4+3cos(αx+β)=2x
⇒3cos(αx+β)=−3−3(x−1)2
For this to have a real solution x=1
⇒cos(α+β)=π,3π
Slope of y=∣x∣+a=1,−1
y=2sinx⇒dxdy=2cosx=1
x=3π
So if a+3π>2sin3π then it will have no solution.
a>333−π