In this chapter we will have only problems and we will use the theory we have learned till now.
If A+B+C=π, prove that sin2A+sin2B−sin2C=2sinAsinBsinC
If A+B+C=180∘, prove that sin22A+sin22B+sin22C=1−2sin2Asin2Bsin2C
Show that sin2A+sin2B+2sinAsinBcos(A+B)=sin2(A+B)
If A+B+C=180∘, prove that cos2A+cos2B+cos2C+2cosAcosBcosC=1
If A+B+C=180∘, prove that sin2A+sin2B+sin2C=2(1+cosAcosBcosC)
If A+B+C=180∘, prove that cos2A+cos2B−cos2C=1−2sinAsinBsinC
If A+B+C=180∘, prove that cos22A+cos22B−cos22C=2cos2Acos2Bsin2C
If A+B+C=180∘, prove that cos22A+cos22B+cos22C=2+2sin2Asin2Bsin2C
If A+B+C=2π, prove that sin2A+sin2B+sin2C=1−2sinAsinBsinC
If A+B+C=2π, prove that cos2A+cos2B+cos2C=2+2sinAsinBsinC
If A+B+C=2π, prove that cos2A+cos2B+cos2C−2cosAcosBcosC=1
If A+B=C, prove that cos2A+cos2B+cos2C−2cosAcosBcosC=1
If A+B=3π, prove that cos2A+cos2B−cosAcosB=43
Show that cos2B+cos2(A+B)−2cosAcosBcos(A+B) is independent of B.
If A+B+C=π and A+B=2C, prove that 4(sin2A+sin2B−sinAsinB)=3
If A+B+C=2π, prove that cos2B+cos2C−sin2A−2cosAcosBcosC=0
If A+B+C=0, prove that cos2A+cos2B+cos2C=1+2cosAcosBcosC
Prove that cos2(B−C)+cos2(C−A)+cos2(A−B)=1+2cos(B−C)cos(C−A)cos(A−B)
If A+B+C=π, prove that sinAcosBcosC+sinBcosCcosA+sinCcosAcosB=sinAsinBsinC
If A+B+C=π, prove that tanA+tanB+tanC=tanAtanBtanC
If A+B+C=π, prove that tan2Atan2B+tan2Btan2C+tan2Ctan2A=1
If A+B+C=π, prove that tan(B+C−A)+tan(C+A−B)+tan(A+B−C)=tan(B+C−A)tan(C+A−B)tan(A+B−C)
If A+B+C=π, prove that cotBcotC+cotCcotA+cotAcotB=1
In a △ABC, if cotA+cotB+cotC=3, prove that the triangle is equilateral.
If A,B,C,D are angles of a quadrilateral, prove that cotA+cotB+cotC+cotDtanA+tanB+tanC+tanD=tanAtanBtanCtanD
If A+B+C=2π, show that cotA+cotB+cotC=cotAcotBcotC
If A+B+C=2π, show that tanAtanB+tanBtanC+tanCtanA=1
If A+B+C=π, prove that tan3A+tan3B+tan3C=tan3Atan3Btan3C
If A+B+C=π, prove that cot2A+cot2B+cot2C=cot2Acot2Bcot2C
If A+B+C=π, prove that tanA+tanBcotA+cotB+tanB+tanCcotB+cotC+tanC+tanAcotC+cotA=1
Prove that tan(A−B)+tan(B−C)+tan(C−A)=tan(A−B)tan(B−C)tan(C−A)
If x+y+z=0, show that cot(x+y−z)cot(z+x−y)+cot(x+y−z)cot(y+z−x)+cot(y+z−x)cot(z+x−y)=1
If A+B+C=nπ(n being zero or an integer ), show that tanA+tanB+tanC=tanAtanBtanC
If A+B+C=π, prove that sin2A+sin2B+sin2C=4sinAsinBsinC
If A+B+C=π, prove that cosA+cosB+cosC−1=4sin2Asin2Bsin2C
Prove that cosA+cosB+cosC−1sin2A+sin2B+sin2C=8cos2Acos2Bcos2C
If A+B+C=π, prove that cos2A+cos2B+cos2C=4cos4π−Acos4π−Bcos4π−C
If A+B+C=π, prove that sin2A+sin2B+sin2C=1+4sin4B+Csin4C+Asin4A+B
If A+B+C=π, prove that sin22A+sin22B−sin22C=1−2cos2Acos2Bcos2C
Prove that 1+cos56∘+cos58∘−cos66∘=4cos28∘cos29∘sin33∘
If A+B+C=π, prove that cos2A+cos2B−cos2C=1−4sinAsinBcosC
If A+B+C=π, prove that sin2A+sin2B−sin2C=4cosAcosBsinC
If A+B+C=π, prove that sinA+sinB+sinC=4cos2Acos2Bcos2C
If A+B+C=π, prove that cosA+cosB−cosC=4cos2Acos2Bsin2C−1
If A+B+C=π, prove that sin(B+C−A)+sin(C+A−B)+sin(A+B−C)=4sinAsinBsinC
If A+B+C=π, prove that sinBsinCcosA+sinCsinAcosB+sinAsinBcosC=2
If A+B+C=π, prove that sinA+sinB+sinCsin2A+sin2B+sin2C=8sin2A sin2Bsin2C
If x+y+z=2π, prove that cos(x−y−z)+cos(y−z−x)+cos(z−x−y)−4cosxcosycosz=0
Show that sin(x−y)+sin(y−z)+sin(z−x)+4sin2x−ysin2y−zsin2z−x=0
If A+B+C=180∘, prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin2B−Csin2C−Asin2A−B
If A+B+C=π, prove that sin2B+C+sin2C+A+sin2A+B=4cos4π−Acos4π−Bcos4π−C
If xy+yz+zx=1, prove that 1−x2x+1−y2y+1−z2z=(1−x2)(1−y2)(1−z2)4xyz
If x+y+z=xyz, show that 1−3x23x−x3+1−3y23y−y3+1−3z23z−z3=1−3x23x−x3.1−3y23y−y3.1−3z23z−z3
If x+y+z=xyz, prove that 1−x22x+1−y22y+1−z22z=1−x22x.1−y22y.1−z22z
If x+y+z=xyz, prove that x(1−y2)(1−z2)+y(1−z2)(1−x2)+z(1−x2)(1−y2)=4xyz
If A+B+C+D=2π, prove that cosA+cosB+cosC+cosD=4cos2A+Bcos2B+Ccos2C+A
If A+B+C=2S, prove that cos2S+cos2(S−A)+cos2(S−B)+cos2(S−C)=2+2cosAcosBcosC
If A+B+C=π, prove that tan22A+tan22B+tan22C≥1
If A+B+C=π, prove that (tanA+tanB+tanC)(cotA+cotB+cotC)=1+secAsecBsecC
If A+B+C=π, prove that (cotB+cotC)(cotC+cotA)(cotA+cotC)=cosecAcosecBcosecC
If A+B+C=π, prove that 21∑sin2A(sin2B+sin2C)=3sinAsinBsinC
If A+B+C+D=2π, prove that cosA−cosB+cosC−cosD=4sin2A+Bsin2A+Dcos2A+C
If A,B,C,D be the angles of a cyclic quadrilateral, prove that cosA+cosB+cosC+cosD=0
If A+B+C=π, prove that cot2A+cot2B+cot2C≥1
If A+B+C=π, prove that cos2Acos2B−C+cos2Bcos2C−A+cos2Ccos2A−B=sinA+sinB+sinC
In a △ABC, prove that sin3Asin(B−C)+sin3Bsin(C−A)+sin3Csin(A−B)=0