∵A+B+C=π∴A+B=π−C
⇒cos(A+B)=cos(π−C)=cosC⇒sinAsinB−cosC=cosAcosB
⇒(sinAsinB−cosC)2=cos2Acos2B
⇒sin2Asin2B+cos2C−2sinAsinBcosC=(1−sin2A)(1−sin2B)
⇒sinA+sin2B+cos2C−1=2sinAsinBcosC
⇒sin2A+sin2B−cos2C=2sinAsinBcosC
A+B+C=180∘⇒2A+2B+2C=90∘⇒2A+2B=90∘−2C
⇒cos(2A+2B)=cos(90∘−2C)
⇒cos2Acos2B−sin2Asin2B=sin2C
⇒sin2C+sin2Asin2B=cos2Acos2B
⇒(sin2C+sin2Asin2B)2=cos22Acos22B
⇒sin22C+sin22Asin22B+2sin2Asin2Bsin2C=(1−cos22A)(1−cos22B)
sin22A+sin22B+sin22C=1−2sin2Asin2Bsin2C
Let A+B=C⇒cos(A+B)=cosC
⇒sinAsinB+cosC=cosAcosB⇒(sinAsinB+cosC)2=cos2Acos2B
⇒sin2Asin2B+cos2C+2sinAsinBcosC=(1−sin2A)(1−sin2B)
⇒sin2A+sin2B+2sinAsinBcosC=sin2C
⇒sin2A+sin2B+2sinAsinBcos(A+B)=sin2(A+B)
Given, A+B+C=180∘⇒A+B=180∘−C⇒cos(A+B)=−cosC
⇒cosAcosB+cosC=sinAsinB⇒(cosAcosB+cosC)2=sin2Asin2B
⇒cos2Acos2B+cos2C+2cosAcosBcosC=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C+2cosAcosBcosC=1
We have just proved that cos2A+cos2B+cos2C+2cosAcosBcosC=1
⇒3−sin2A−sin2B−sin2C+2cosAcosBcosC=1
⇒sin2A+sin2B+sin2C=2(1+cosAcosBcosC)
Given, A+B+C=180∘⇒A+B=180∘−C⇒cos(A+B)=−cosC
⇒cosAcosB=sinAsinB−cosC⇒cos2Acos2B=sin2Asin2B+cos2C−2sinAsinBcosC
⇒cos2Acos2B=(1−cos2A)(1−cos2B)+cos2C−2sinAsinBcosC
⇒cos2A+cos2B−cos2C=1−2sinAsinBcosC
Given, A+B+C=180∘⇒2A+B+C=90∘
⇒cos(2A+2B)=sin2C
⇒cos2Acos2B−sin2C=sin2Asin2B
⇒cos22Acos22B+sin22C−2cos2Acos2Bsin2C=(1−cos22A)(1−cos22B)
⇒cos22A+cos22B−cos22C=2cos2Acos2Bsin2C
Given, A+B+C=180∘⇒2A+B+C=90∘
⇒cos(2A+2B)=sin2C
⇒cos2Acos2B=sin2Asin2B+sin2C
⇒cos22Acos22B=sin22Asin22B+sin22C+2sin2Asin2Bsin2C
⇒cos22Acos22B=(1−cos22A)(1−cos22B)+sin22C+2sin2Asin2Bsin2C
cos22A+cos22B+cos22C=2+2sin2Asin2Bsin2C
Given, A+B+C=2π⇒A+B=2π−C⇒cos(A+B)=sinC
⇒cosAcosB=sinAsinB+sinC
⇒cos2Acos2B=sin2Asin2B+sin2C+2sinAsinBsinC
⇒(1−sin2A)(1−sin2B)=sin2Asin2B+sin2C+2sinAsinBsinC
⇒sin2A+sin2B+sin2C=1−2sinAsinBsinC
We have just proven that sin2A+sin2B+sin2C=1−2sinAsinBsinC in previous problem.
⇒1−cos2A+1−cos2B+1−cos2C=1−2sinAsinBsinC
⇒cos2A+cos2B+cos2C=2+2sinAsinBsinC
Givem A+B+C=2π⇒A+B=2π−C⇒cos(A+B)=cosC
⇒cosAcosB−cosC=sinAsinB
⇒cos2Acos2B+cos2C−2cosAcosBcosC=sin2Asin2B=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C−2cosAcosBcosC=1
Given A+B=C⇒cos(A+B)=cosC
⇒cosAcosB−cosC=sinAsinB
⇒cos2Acos2B+cos2C−2cosAcosBcosC=sin2Asin2B
⇒cos2Acos2B+cos2C−2cosAcosBcosC=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C−2cosAcosBcosC=1
Given A+B=3π⇒cos(A+B)=cos3π=21
⇒cosAcosB−21=sinAsinB
⇒cos2Acos2B−cosAcosB+41=sin2Asin2B=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B−cosAcosB=43
From problem 12 we have A+B=C and cos2A+cos2B+cos2C−2cosAcosBcosC=1
Substituting C=A+B we get cos2A+cos2B+cos2(A+B)−2cosAcosBcos(A+B)=1
⇒cos2B+cos2(A+B)−2cosAcosBcos(A+B)=1−cos2A=sin2A which is independent of
B
Given A+B+C=π and A+B=2C⇒C=3π⇒A+B=π−3pi
cos(A+B)=−cos3π⇒cosAcosB=sinAsinB−21
⇒cos2Acos2B=sin2Asin2B−sinAsinB+41
⇒(1−sin2A)(1−sin2B)=sin2Asin2B−sinAsinB+41
⇒4(sin2A+sin2B−sinAsinB)=3
Given A+B+C=2π⇒cos(B+C)=cos(2π−A)=cosA
⇒cosBcosC−cosA=sinBsinC
⇒cosBcos2C+cos2A−2cosAcosBcosC=sin2Bsin2C=(1−cos2B)(1−cos2C)
⇒cos2B+cos2C−sin2A−2cosAcosBcosC=0
Given A+B+C=0⇒cos(A+B)=cosC
⇒cosAcosB−cosC=sinAsinB
⇒cos2Acos2B+cos2C−2cosAcosBcosC=sin2Asin2B=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C=1+2cosAcosBcosC
Putting A=B−C,B=C−A and C=A−B in 17 we can obtain the desired result.
Given A+B+C=π, we have to prove that sinAcosBcosC+sinBcosCcosA+sinCcosAcosB=sinAsinBsinC
Dividing both sides by sinAsinBsinC, we get
cotBcotC+cotCcotA+cotAcotB=1
A+B=π−C⇒cot(A+B)=−cotC
⇒cotA+cotBcotAcotB−1=−cotC
⇒cotBcotC+cotCcotA+cotAcotB=1
Given, A+B+C=π⇒A+B=π−C
⇒tan(A+B)=tan(π−C)=−tanC
⇒1−tanAtanBtanA+tanB=−tanC
⇒tanA+tanB+tanC=tanAtanBtanC
Given A+B+C=π⇒2A+B=2π−C
⇒tan2A+B=tan2π−C
⇒1−tan2Atan2Btan2A+tan2B=cot2C=tan2C1
⇒tan2Atan2B+tan2Btan2C+tan2Ctan2A=1
Let B+C−A=α,C+A−B=β,A+B−C=γ
α+β+γ=A+B+C=π
We have just proven that if A+B+C=π then ⇒tanA+tanB+tanC=tanAtanBtanC
Thus, substituting we get, ⇒tanα+tanβ+tanγ=tanαtanβtanγ
⇒tan(B+C−A)+tan(C+A−B)+tan(A+B−C)=tan(B+C−A)tan(C+A−B)tan(A+B−C)
Given A+B+C=π⇒A+B=π−C⇒cot(A+B)=cot(π−C)
⇒cotA+cotBcotAcotB−1=−cotC
⇒cotBcotC+cotCcotA+cotAcotB=1
From previosu problem if A+B+C=π then ⇒cotBcotC+cotCcotA+cotAcotB=1
Given cotA+cotB+cotC=3
⇒cot2A+cot2B+cot2C+2(cotAcotB+cotBcotC+cotCcotA)=3
cot2A+cot2B+cot2C=1
2cot2A+2cot2B+2cot2C−2=0
2cot2A+2cot2B+2cot2C−2(cotAcotB+cotBcotC+cotCcotA)=0
(cotA−cotB)2+(cotB−cotC)2+(cotC−cotA)2=0
This is possible only if cotA−cotB=0 i.e. cotA=cotB, cotB−cotC=0 i.e. cotB=cotC and cotC−cotA=0 i.e. cotC=cotA
∴cotA=cotB=cotC⇒A=B=C
∵A+B+C+D=2π⇒A+B=2π−C−D
⇒tan(A+B)=−tan(C+D)
⇒1−tanAtanBtanA+tanB=−1−tanCtanDtanC+tanD
⇒(tanA+tanB)(1−tanCtanD)=−(1−tanAtanB)(tanC+tanD)
⇒tanA+tanB+tanC+tanD=tanAtanBtanC+tanAtanCtanD+tanAtanBtanD+tanBtanCtanD
Dividing both sides by tanAtanBtanCtanD, we get
tanAtanBtanCtanDtanA+tanB+tanC+tanD=tanA1+tanB1+tanC1+tanD1
⇒cotA+cotB+cotC+cotDtanA+tanB+tanC+tanD=tanAtanBtanCtanD
Given A+B+C=2π⇒A+B=2π−C
⇒cot(A+B)=cot(2π−C)
⇒cotA+cotBcotAcotB−1=tanC=cotC1
⇒cotA+cotB+cotC=cotAcotBcotC
We have just proven in 26 that ⇒cotA+cotB+cotC=cotAcotBcotC
Dividing both sides by cotAcotBcotC, we get
tanAtanB+tanBtanC+tanCtanA=1
Given A+B+C=π⇒3(A+B+C)=3π⇒3A+3B=3π−3C
⇒tan(3A+3B)=tan(3π−3C)=−tan3C
⇒1−tan3Atan3Btan3A+tan3B=−tan3C
⇒tan3A+tan3B+tan3C=tan3Atan3Btan3C
Given A+B+C=π⇒2A+B=2π−C
⇒cot2A+B=cot2π−C
⇒cot2A+cot2Bcot2Acot2B−1=tan2C=cot2C1
⇒cot2A+cot2B+cot2C=cot2Acot2Bcot2C
We have to prove that tanA+tanBcotA+cotB+tanB+tanCcotB+cotC+tanC+tanAcotC+cotA=1
Putting tanA=cotA1,tanB=cotB1,tanC=cotC1, we get
cotAcotB+cotBcotC+cotCcotA=1
We have already proven above in problem 19.
Let A−B=α,B−C=β,C−A=γ, then
α+β+γ=0
⇒tan(α+β)=−tanγ
⇒1−tanαtanβtanα+tanβ=−tanγ
tanα+tanβ+tanγ=tanαtanβtanγ
Substituting back the values, we get
tan(A−B)+tan(B−C)+tan(C−A)=tan(A−B)tan(B−C)tan(C−A)
We have already proven in problem 19 that if A+B+C=0, then
cotAcotB+cotBcotC+cotCcotA=1
Let A=x+y−z,B=z+x−y,C=y+z−x, then
A+B+C=x+y+z=0
⇒cotAcotB+cotBcotC+cotCcotA=1
Substituting back the values, we get
cot(x+y−z)cot(z+x−y)+cot(x+y−z)cot(y+z−x)+cot(y+z−x)cot(z+x−y)=1
Given A+B+C=nπ⇒tan(A+B)=tan(nπ−C)=−tanC
⇒1−tanAtanBtanA+tanB=−tanC
⇒tanA+tanB+tanC=tanAtanBtanC
L.H.S =(sin2A+sin2B)+sin2C=2sin(A+B)cos(A−B)+sin2C
=2sin(π−C)cos(A−B)+sin2C=2sinCcos(A−B)+2sinCcosC
=2sinC[cos(A−B)+cos{π−(A+B)}]=2sinC[cos(A−B)−cos(A+B)]
=4sinAsinBsinC
L.H.S. =(cosA+cosB)+cosC−1=2cos2A+Bcos2A−B+cosC−1
=2cos(2π−2C)cos2A−B+cosC−1
=2sin2Ccos2A−B+1−2sin22C−1
=2sin2C[cos2A−B−sin2C]
=2sin2C[cos2A−B−sin(2π−2A+B)]
=2sin2C[cos2A−B−cos2A+B]
=4sin2Asin2Bsin2C
We have proven in 34 and 35 that sin2A+sin2B+sin2C=4sinAsinBsinC and cosA+cosB+cosC−1=4sin2Asin2Bsin2C respectively. Thus,
cosA+cosB+cosC−1sin2A+sin2B+sin2C=4sin2Asin2Bsin2C4sinAsinBsinC
=4sin2Asin2Bsin2C4.2sin2Acos2A.2sin2Bcos2B.2sin2Ccos2C
=8cos2Acos2Bcos2C
L.H.S. =(cos2A+cos2B)+cos2C
=2cos4A+Bcos4A−B+sin2π−C
=2cos4π−Ccos4A−B+2sin4π−Ccos4π−C
=2cos4π−C[cos4A−B+cos(2π−4π−C)]
=2cos4π−C2cos8π+A+C−Bcos8π+C−A+B
=4cos4π−Acos4π−Bcos4π−C
L.H.S. =(sin2A+sin2B)+sin2C
=2sin4A+Bcos4A−B+cos2π−C
=2sin4π−Ccos4A−B+1−2sin24π−C
=1+2sin4π−C[cos4A−B−sin4π−C]
=1+2sin4π−C[cos4A−B−cos4π+C]
=1+2sin4π−C.2sin8π+A+C−Bsin8π+C−A+B
=1+4sin4B+Csin4C+Asin4A+B
L.H.S. =21−cosA+21−cosB−21−cosC
=21−21[cosA+cosB−cosC]
cosA+cosB−cosC=2cos2A+Bcos2A−B−cosC
=2sin2Ccos2A−B−1+2sin22C
=−1+2sin2C[cos2A−B+sin2C]
=−1+2sin2C[cos2A−B+cos2A+B]
=−1+2sin2C.2cos2Acos2B
=−1+4cos2Acos2Bsin2C
Thus, L.H.S. =1−2cos2Acos2Bsin2C
L.H.S. =1+cos56∘+(cos58∘−cos66∘)
=2cos228∘+2sin62∘sin4∘
=2cos228∘+2cos28∘sin4∘
=2cos28∘[sin4∘+cos28∘]
=4cos28∘cos29∘sin33∘
Given A+B+C=π, we have to prove that cos2A+cos2B−cos2C=1−4sinAsinBcosC
L.H.S. =cos2A+cos2B−cos2C=cos2A+cos2B−cos[2π−2(A+B)]
=2cos(A+B)cos(A−B)−cos2(A+B)=2cos(A+B)cos(A−B)−2cos2(A+B)+1
=1+2cos(A+B)[cos(A−B)−cos(A+B)]
=1−4sinAsinBcosC[∵cos(A+B)=cos(π−C)=−cosC]
Given A+B+C=π, we have to prove that sin2A+sin2B−sin2C=4cosAcosBsinC
L.H.S. =sin2A+sin2B−sin2C=2sin(A+B)cos(A−B)−2sinCcosC
[∵sin(A+B)=sin(π−C)=sinC,cosC=cos[π−(A+B)]=−cos(A+B)]
=2sinC[cos(A−B)+cos(A+B)]
=4cosAcosBsinC
Given A+B+C=π, we have to prove that sinA+sinB+sinC=4cos2Acos2Bcos2C
L.H.S. =sinA+sinB+sinC=2sin2A+Bcos2A−B+2sin2Ccos2C
=2sin2π−Ccos2A−B+2sin2Ccos2C
=2cos2Ccos2A−B+2sin2π−A−Bcos2C
=2cos2C[cos2A−B+cos2A+B]
=4cos2Acos2Bcos2C
L.H.S. =cosA+cosB−cosC=2cos2A+Bcos2A−B−1+2sin22C
=2cos(2π−C)cos2A−B+2sin22C−1
=2sin2C[cos2A−B+cos(2[pi−2C)]−1
=2sin2C[cos2A−B+cos2A+B]−1
=4cos2Acos2Bsin2C−1
B+C−A=π−A−A=π−2A,C+A−B=π−2B,A+B−C=π−2C
⇒ L.H.S. =sin2A+sin2B+sin2C
We have proven in problem 34 that sin2A+sin2B+sin2C=4sinAsinBsinC
∴sin(B+C−A)+sin(C+A−B)+sin(A+B−C)=4sinAsinBsinC
L.H.S. =sinBsinCcosA+sinCsinAcosB+sinAsinBcosC=2
=sinAsinBsinCcosAsinA+cosBsinB+cosCsinC
=2sinAsinBsinCsin2A+sin2B+sin2C
We have proven in problem 34 that sin2A+sin2B+sin2C=4sinAsinBsinC
⇒2sinAsinBsinCsin2A+sin2B+sin2C=2
Given A+B+C=π, we have to prove that sinA+sinB+sinCsin2A+sin2B+sin2C=8sin2Asin2Bsin2C
We have proven in problem 34 that sin2A+sin2B+sin2C=4sinAsinBsinC
We have also proven in problem 43 that sinA+sinB+sinC=4cos2Acos2Bcos2C
Thus, L.H.S. =4cos2Acos2Bcos2C4sinAsinBsinC
=8sin2Asin2Bsin2C
Given x+y+z=2π, we have to prove that cos(x−y−z)+cos(y−z−x)+cos(z−x−y)−4cosxcosycosz=0
x−y−z=x−2π+x=2x−2π
Similarly y−z−x=2y−2π and z−x−y=2z−2π
∴ L.H.S. =sin2x+sin2y+sin2z−4cosxcosycosz
Now, sin2x+sin2y+sin2z=2sin(x+y)cos(x−y)+2sinzcosz
=2coszcos(x−y)+2sin(2π−x−y)cosz
=2cosz[cos(x−y)+cos(x+y)]
=4cosxcosycosz
∴sin2x+sin2y+sin2z−4cosxcosycosz=0
We have to prove that sin(x−y)+sin(y−z)+sin(z−x)+4sin2x−ysin2y−zsin2z−x=0
Let x−y=α,y−z=β and z−x=γ then α+β+γ=0
The given equation becomes sinα+sinβ+sinγ+4sin2αsin2βsin2γ=0
Considering sinα+sinβ+sinγ
=sin2α+βcos2α−β+2sin2γcos2γ
=−sin2γcos2α−β+2sin2γcos2α+β
=−4sin2αsin2βsin2γ
Thus, sin(x−y)+sin(y−z)+sin(z−x)+4sin2x−ysin2y−zsin2z−x=0
B+2C=π−A+C,C+2A=π−B+A,A+2B=π−C+B
Thus, L.H.S. =−[sin(C−A)+sin(A−B)+sin(B−C)]
Also, note that A−B+B−C+C−A=0 and we have proven in previous problem that sinα+sinβ+sinγ=4sin2αsin2βsin2γ when α+β+γ=0
Thus, sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin2B−Csin2C−Asin2A−B
L.H.S. =sin2π−A+sin2π−B+sin2π−C
Following the result of 43 we can say that
sin2π−A+sin2π−B+sin2π−C=4cos4π−Acos4π−Bcos4π−C
Let x=tanA,y=tanB,z=tanC
Given, xy+yz+zx=1
∴tanAtanB+tanBtanC+tanCtanA=1
⇒tanC(tanA+tanB)=1−tanAtanB
⇒1−tanAtanBtanA+tanB=tanC1=cotC
⇒tan(A+B)=tan(2π−C)
⇒A+B=2π−C⇒A+B+C=2π
L.H.S. =1−x2x+1−y2y+1−z2z
=1−tan2AtanA+1−tan2BtanB+1−tan2CtanC
=21(tan2A+tan2B+tan2C)
We have already proven that if 2A+2B+2C=π then tan2A+tan2B+tan2C=tan2Atan2Btan2C
∴21(tan2A+tan2B+tan2C)=21tan2Atan2Btan2C
=211−tan2A2tanA.1−tan2B2tanB.1−tan2C2tanC
=(1−x2)(1−y2)(1−z2)4xyz
Let x=tanA,y=tanB,z=tanC
Now, x+y+z=xyz
⇒tanA+tanB+tanC=tanAtanBtanC
⇒tanA+tanB=tanC(tanAtanB−1)
⇒1−tanAtanCtanA+tanB=−tanC=tan(π−C)
⇒A+B=π−C⇒A+B+C=π
L.H.S. =1−3x23x−x3+1−3y23y−y3+1−3z23z−z3
=1−3tan2A3tanA−tan3A+1−3tan2B3tanB−tan3B+1−3tan2C3tanC−tan3C
=tan3A+tan3B+tan3C
Now following like prebious problem
tan3A+tan3B+tan3C=tan3Atan3Btan3C
=1−3tan2A3tanA−tan3A1−3tan2B3tanB−tan3B1−3tan2C3tanC−tan3C
=1−3x23x−x3.1−3y23y−y3.1−3z23z−z3
Given x+y+z=xyz, let x=tanA,y=tanB,z=tanC
⇒tanA+tanB+tanC=tanAtanBtanC
⇒tanA+tanB=tanC(tanAtanB−1)
⇒1−tanAtanCtanA+tanB=−tanC=tan(π−C)
⇒A+B=π−C⇒A+B+C=π
L.H.S. =1−x22x+1−y22y+1−z22z
=1−tan2A2tanA+1−tan2B2tanB+1−tan2C2tanC
=tan2A+tan2B+tan2C
Following like problem 52
tan2A+tan2B+tan2C=tan2Atan2Btan2C=1−x22x.1−y22y.1−z22z
Given x+y+z=xyz, let x=tanA,y=tanB,z=tanC
⇒tanA+tanB+tanC=tanAtanBtanC
⇒tanA+tanB=tanC(tanAtanB−1)
⇒1−tanAtanCtanA+tanB=−tanC=tan(π−C)
⇒A+B=π−C⇒A+B+C=π
Given, x(1−y2)(1−z2)+y(1−z2)(1−x2)+z(1−x2)(1−y2)=4xyz
Dividing both sides with (1−x2)(1−y2)(1−z2), we get
1−x2x+1−y2y+1−z2z=(1−x2)(1−y2)(1−z2)4xyz
L.H.S. =1−x2x+1−y2y+1−z2z=21[tan2A+tan2B+tan2C]
=21tan2Atan2Btan2C=(1−x2)(1−y2)(1−z2)4xyz
L.H.S. =(cosA+cosB)+(cosC+cosD)
=2cos2A+Bcos2A−B+2cos2C+Dcos2C−D
=2cos2A+Bcos2A−B+2cos(π−2A+B)cos2C−D
=2cos2A+Bcos2A−B−2cos2A+Bcos2C−D
=2cos2A+B[cos2A−B−cos2C−D]
=2cos2A+B.2sin4A−B+C−Dsin4C−D−A+B
=4cos2A+Bsin4A+C−(B+C)sin4B+C−(A+D)
=4cos2A+Bsin4A+C−(2π−A−C)sin4B+C−(2π−B−C)
=4cos2A+Bsin2A+C−πsin2B+C−π
=4cos2A+Bcos2B+Ccos2C+A
L.H.S. =cos2S+cos2(S−A)+cos2(S−B)+cos2(S−C)
=21+cos2S+21+cos(2S−2A)+21+cos(2S−2B)+21+cos(2S−2C)
=21[4+{cos2S+cos(2S−2A)}+{cos(2S−2B)+]cos(2S−2C)}]
=21[4+2cos(2S−A)cosA+2cos(2S−B−C)cos(C−B)]
=21[4+2cos(B+C)cosA+2cosAcos(C−B)]
=21[4+2cosA{cos(B+C)+cos(C−B)}]
=2+2cosAcosBcosC
If A+B+C=π then according to problem 21 tan2Atan2B+tan2Btan2C+tan2Ctan2A=1
Let tan2A=x,tan2B=y,tan2C=z
⇒xy+yz+xz=1
Now, (x−y)2+(y−z)2+(z−x)2≥0
⇒x2+y2+z2≥xy+yz+zx
⇒x2+y2+z2≥1
tan22A+tan22B+tan22C≥1
We have proven that if A+B+C=π then tanA+tanB+tanC=tanAtanBtanC
Thus, L.H.S. =tanAtanBtanC(cotA+cotB+cotC)
=tanBtanC+tanCtanA+tanAtanB
=cosBcosCsinBsinC+cosCcosAsinCsinA+cosAcosBsinAsinB
=cosAcosBcosCcosAsinBsinC+cosBsinCsinA+cosCsinAsinB
=cosAcosBcosCsinC[cosAsinB+sinAcosB]+cosCsinAsinB
=cosAcosBcosCsinCsin(A+B)+cosCsinAsinB
=cosAcosBcosCsin2C+cosCsinAsinB
=cosAcosBcosC1−cos2C+cosCsinAsinB
=]cosAcosBcosC1+cosC[sinAsinB−cosC]
=cosAcosBcosC1+cosC[sinAsinB−cos(π−A−B)]
=cosAcosBcosC1+cosC[sinAsinB+cos(A+B)]
=cosAcosBcosC1+cosAcosBcosC=1+secAsecBsecC
cotB +cotC=sinBcosB+sinCcosC
=sinBsinCcosBsinC+cosCsinB=sinBsinCsin(B+C)
=sinBsinCsin(π−A)=sinBsinCsinA
Similarly, cotC+cotA=sinCsinAsinB and cotA+cotB=sinA+sinBsinC
L.H.S. =sin2AsinBcosB+sin2AsinCcosC+sin2BsinAcosA+sin2BsinCcosC+sin2CsinAcosA+sin2CsinBcosB
=(sin2AsinBcosB+sin2BsinBcosB)+(sin2AsinCcosC+sin2CsinAcosA)+(sin2BsinCcosC+sin2CsinBcosB)
=sinAsinBsin(A+B)+sinAsinCsin(A+C)+sinBsinCsin(B+C)
=sinAsinBsinC+sinAsinCsinB+sinBsinCsinA
=3sinAsinBsinC
L.H.S. =cosA−cosB+cosC−cosD=2sin2A+Bsin2B−A+2sin2C+Dsin2D−C
=2sin2A+Bsin2B−A+2sin22π−(A+B)sin2D−C
=2sin2A+B[sin2B−A+sin2D−C]
=2sin2A+B.2sin4B+D−(A+C)cos4B+C−(A+D)
=4sin2A+Bsin42π−2(A+C)cos42π−2(A+D)
=4sin2A+Bsin2A+Dcos2A+C
Since A,B,C,D are angles of a cyclic quadrilateral ∴A+B+C+D=2π,A+C=π,B+D=π
We have proven in problem 56 that cosA+cosB+cosC+cosD=4cos2A+Bcos2B+Ccos2C+A
cos2A+C=cos2π=0
∴cosA+cosB+cosC+cosD=0
We know that (cotA−cotB)2+(cotB−cotC)2+(cotC−cotA)2≥0
Also, ∵A+B+C=π∴cotAcotB+cotBcotC+cotCcotA=1
∴2cot2A+2cot2B+2cot2C≥2(cotAcotB+cotBcotC+cotCcotA)
cot2A+cot2B+cot2C≥1
cos2Acos2B−C=cos(2π−2B+C)cos2B−C
=sin2B+Ccos2B−C=21(2sin2B+Ccos2B−C)
=21(sinB+sinC)
Similarly cos2Bcos2C−A=21(sinA+sinC)
and cos2Ccos2A−B=21(sinA+sinB)
Adding all these we have desired result.
sin3Asin(B−C)=(3sinA−4sin3A)sin(B−C)
=3sinAsin(B−C)−4sin2A.sinAsin(B−C)
=3sin(B+C)sin(B−C)−4sin2Asin(B+C)sin(B−C)[∵B+C=π−A⇒sin(B+C)=sinA]
=23(cos2C−cos2B)−2sin2A(cos2C−cos2B)
Now, 2sin2A(cos2C−cos2B)=(1−cos2A)(cos2C−cos2B)
=cos2C−cos2B−cos2Ccos2A+cos2Acos2B
Thus, sin3Asin(B−C)+sin3Bsin(C−A)+sin3Csin(A−B)=0