1 − cos A 1 + cos A = cosec A − cot A \sqrt{\frac{1 - \cos A}{1 + \cos A}} = \cosec A - \cot A 1 + c o s A 1 − c o s A = cosec A − cot A
sec 2 A + cosec 2 A = tan A + cot A \sqrt{\sec^2A + \cosec^2A} = \tan A + \cot A sec 2 A + cosec 2 A = tan A + cot A
( cosec A − sin A ) ( sec A − cos A ) ( tan A + cot A ) = 1 (\cosec A - \sin A)(\sec A - \cos A)(\tan A + \cot A) = 1 ( cosec A − sin A ) ( sec A − cos A ) ( tan A + cot A ) = 1
cos 4 A − sin 4 A + 1 = 2 cos 2 A \cos^4 A - \sin^4 A + 1 = 2\cos^2 A cos 4 A − sin 4 A + 1 = 2 cos 2 A
( sin A + cos A ) ( 1 − sin A cos A ) = sin 3 A + cos 3 A (\sin A + \cos A)(1 - \sin A\cos A) = \sin^3A + \cos^3A ( sin A + cos A ) ( 1 − sin A cos A ) = sin 3 A + cos 3 A
sin A 1 + cos A + 1 + cos A sin A = 2 cosec A \frac{\sin A}{1 + \cos A}+\frac{1 + \cos A}{\sin A} = 2\cosec A 1 + c o s A s i n A + s i n A 1 + c o s A = 2 cosec A
sin 6 A − c o s 6 A = 1 − 3 cos 2 A sin 2 A \sin^6A - cos^6A = 1 - 3\cos^2A\sin^2A sin 6 A − co s 6 A = 1 − 3 cos 2 A sin 2 A
1 − sin A 1 + sin A = sec A − tan A \sqrt{\frac{1 - \sin A}{1 + \sin A}} = \sec A - \tan A 1 + s i n A 1 − s i n A = sec A − tan A
cosec A cosec A − 1 + cosec A cosec A + 1 = 2 sec 2 A \frac{\cosec A}{\cosec A - 1} + \frac{\cosec A}{\cosec A + 1} = 2\sec^2 A c o s e c A − 1 c o s e c A + c o s e c A + 1 c o s e c A = 2 sec 2 A
cosec A tan A + cot A = cos A \frac{\cosec A}{\tan A + \cot A} = \cos A t a n A + c o t A c o s e c A = cos A
( sec A + cos A ) ( sec A − cos A ) = tan 2 A + sin 2 A (\sec A + \cos A)(\sec A - \cos A) = \tan^2 A + \sin^2A ( sec A + cos A ) ( sec A − cos A ) = tan 2 A + sin 2 A
1 tan A + cot A = sin A cos A \frac{1}{\tan A + \cot A} = \sin A\cos A t a n A + c o t A 1 = sin A cos A
1 − tan A 1 + tan A = cot A − 1 cot A + 1 \frac{1 - \tan A}{1 + \tan A} = \frac{\cot A - 1}{\cot A + 1} 1 + t a n A 1 − t a n A = c o t A + 1 c o t A − 1
1 + tan 2 A 1 + cot 2 A = sin 2 A cos 2 A \frac{1 + \tan^2A}{1 + \cot^2A} = \frac{\sin^2A}{\cos^2A} 1 + c o t 2 A 1 + t a n 2 A = c o s 2 A s i n 2 A
sec A − tan A sec A + tan A = 1 − 2 sec A tan A + 2 tan 2 A \frac{\sec A - \tan A}{\sec A + \tan A} = 1 - 2\sec A\tan A + 2\tan^2 A s e c A + t a n A s e c A − t a n A = 1 − 2 sec A tan A + 2 tan 2 A
1 sec A − tan A = sec A + tan A \frac{1}{\sec A - \tan A} = \sec A + \tan A s e c A − t a n A 1 = sec A + tan A
tan A 1 − cot A + cot A 1 − tan A = sec A cosec A + 1 \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = \sec A\cosec A+ 1 1 − c o t A t a n A + 1 − t a n A c o t A = sec A cosec A + 1
cos A 1 − tan A + sin A 1 − cot A = sin A + cos A \frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A 1 − t a n A c o s A + 1 − c o t A s i n A = sin A + cos A
( sin A + cos A ) ( tan A + cot A ) = sec A + cosec A (\sin A + \cos A)(\tan A + \cot A) = \sec A + \cosec A ( sin A + cos A ) ( tan A + cot A ) = sec A + cosec A
sec 4 A − sec 2 A = tan 4 A + tan 2 A \sec^4A - \sec^2A = \tan^4A + \tan^2A sec 4 A − sec 2 A = tan 4 A + tan 2 A
cot 4 A + cot 2 A = cosec 4 A − cosec 2 A \cot^4A + \cot^2A = \cosec^4A - \cosec^2A cot 4 A + cot 2 A = cosec 4 A − cosec 2 A
cosec 2 A − 1 = cos A cosec A \sqrt{\cosec^2A - 1} = \cos A\cosec A cosec 2 A − 1 = cos A cosec A
sec 2 A cosec 2 A = tan 2 A + cot 2 A + 2 \sec^2A\cosec^2A = \tan^2A + \cot^2A + 2 sec 2 A cosec 2 A = tan 2 A + cot 2 A + 2
tan 2 A − sin 2 A = sin 4 A sec 2 A \tan^2A - \sin^2A = \sin^4A \sec^2A tan 2 A − sin 2 A = sin 4 A sec 2 A
( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) = 2 (1 + \cot A - \cosec A)(1 + \tan A + \sec A) = 2 ( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) = 2
cot A cos A cot A + cos A = cot A − cos A cot A cos A \frac{\cot A\cos A}{\cot A + \cos A} = \frac{\cot A - \cos A}{\cot A \cos A} c o t A + c o s A c o t A c o s A = c o t A c o s A c o t A − c o s A
cot A + tan B cot B + tan A = cot A tan B \frac{\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B c o t B + t a n A c o t A + t a n B = cot A tan B
( 1 sec 2 A − cos 2 A + 1 cosec 2 A − sin 2 A ) cos 2 A sin 2 A = 1 − cos 2 A sin 2 A 2 + cos 2 A sin 2 A \left(\frac{1}{\sec^2 A - \cos^2A} + \frac{1}{\cosec^2A - \sin^2A}\right)\cos^2A\sin^2A = \frac{1 - \cos^2A\sin^2A}{2 +
\cos^2A\sin^2A} ( s e c 2 A − c o s 2 A 1 + c o s e c 2 A − s i n 2 A 1 ) cos 2 A sin 2 A = 2 + c o s 2 A s i n 2 A 1 − c o s 2 A s i n 2 A
sin 8 A − cos 8 A = ( sin 2 A − cos 2 A ) ( 1 − 2 sin 2 A cos 2 A ) \sin^8A - \cos^8A = (\sin^2A - \cos^2A)(1 - 2\sin^2A\cos^2A) sin 8 A − cos 8 A = ( sin 2 A − cos 2 A ) ( 1 − 2 sin 2 A cos 2 A )
cos A cosec A − sin A sec A cos A + sin A = cosec A − sec A \frac{\cos A\cosec A - \sin A\sec A}{\cos A + \sin A} = \cosec A - \sec A c o s A + s i n A c o s A c o s e c A − s i n A s e c A = cosec A − sec A
1 cosec A − cot A − 1 sin A = 1 sin A − 1 cosec A + cot A \frac{1}{\cosec A - \cot A} - \frac{1}{\sin A} = \frac{1}{\sin A} - \frac{1}{\cosec A + \cot A} c o s e c A − c o t A 1 − s i n A 1 = s i n A 1 − c o s e c A + c o t A 1
tan A + sec A − 1 tan A − sec A + 1 = 1 + sin A cos A \frac{\tan A + \sec A - 1}{\tan A - \sec A + 1} = \frac{1 + \sin A}{\cos A} t a n A − s e c A + 1 t a n A + s e c A − 1 = c o s A 1 + s i n A
( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = 2 tan A cot B ( cosec A + sec B ) (\tan A + \cosec B)^2 - (\cot B - \sec A)^2 = 2\tan A\cot B(\cosec A + \sec B) ( tan A + cosec B ) 2 − ( cot B − sec A ) 2 = 2 tan A cot B ( cosec A + sec B )
2 sec 2 A − sec 4 A − 2 cosec 2 A + cosec 4 A = cot 4 A − tan 4 A 2\sec^2 A - \sec^4A - 2\cosec^2A + \cosec^4A = \cot^4A - \tan^4A 2 sec 2 A − sec 4 A − 2 cosec 2 A + cosec 4 A = cot 4 A − tan 4 A
( sin A + cosec A ) 2 + ( cos A + sec A ) 2 = tan 2 A + cot 2 A + 7 (\sin A + \cosec A)^2 + (\cos A + \sec A)^2 = \tan^2A + \cot^2A + 7 ( sin A + cosec A ) 2 + ( cos A + sec A ) 2 = tan 2 A + cot 2 A + 7
( cosec A + cot A ) ( 1 − sin A ) − ( sec A + tan A ) ( 1 − cos A ) = ( cosec A − sec A ) [ 2 − ( 1 − cos A ) ( 1 − sin A ) ] (\cosec A + \cot A)(1 - \sin A) - (\sec A + \tan A)(1 - \cos A) = (\cosec A - \sec A)[2 - (1 - \cos A)(1 - \sin A)] ( cosec A + cot A ) ( 1 − sin A ) − ( sec A + tan A ) ( 1 − cos A ) = ( cosec A − sec A ) [ 2 − ( 1 − cos A ) ( 1 − sin A )]
( 1 + cot A + tan A ) ( sin A − cos A ) = sec A cosec 2 A − cosec A sec 2 A (1 + \cot A + \tan A)(\sin A - \cos A) = \frac{\sec A}{\cosec^2A} - \frac{\cosec A}{\sec^2A} ( 1 + cot A + tan A ) ( sin A − cos A ) = c o s e c 2 A s e c A − s e c 2 A c o s e c A
1 sec A − tan A − 1 cos A = 1 cos A − 1 sec A + tan A \frac{1}{\sec A - \tan A} - \frac{1}{\cos A} = \frac{1}{\cos A} - \frac{1}{\sec A + \tan A} s e c A − t a n A 1 − c o s A 1 = c o s A 1 − s e c A + t a n A 1
3 ( sin A − cos A ) 4 + 4 ( sin 6 A + cos 6 A ) + 6 ( sin A + cos A ) 2 = 13 3(\sin A - \cos A)^4 + 4(\sin^6 A + \cos^6 A) + 6(\sin A + \cos A)^2 = 13 3 ( sin A − cos A ) 4 + 4 ( sin 6 A + cos 6 A ) + 6 ( sin A + cos A ) 2 = 13
1 + cos A 1 − cos A = cosec A + cot A \sqrt{\frac{1 + \cos A}{1 - \cos A}} = \cosec A + \cot A 1 − c o s A 1 + c o s A = cosec A + cot A
cos A 1 + sin A + cos A 1 − sin A = 2 sec A \frac{\cos A}{1 + \sin A} + \frac{\cos A}{1 - \sin A} = 2\sec A 1 + s i n A c o s A + 1 − s i n A c o s A = 2 sec A
tan A sec A − 1 + tan A sec A + 1 = 2 cosec A \frac{\tan A}{\sec A - 1} + \frac{\tan A}{\sec A + 1} = 2\cosec A s e c A − 1 t a n A + s e c A + 1 t a n A = 2 cosec A
1 1 − sin A − 1 1 + sin A = 2 sec A tan A \frac{1}{1 - \sin A} - \frac{1}{1 + \sin A} = 2\sec A\tan A 1 − s i n A 1 − 1 + s i n A 1 = 2 sec A tan A
1 + tan 2 A 1 + cot 2 A = ( 1 − tan A 1 − cot A ) 2 \frac{1 + \tan^2 A}{1 + \cot^2 A} = \left(\frac{1 - \tan A}{1 - \cot A}\right)^2 1 + c o t 2 A 1 + t a n 2 A = ( 1 − c o t A 1 − t a n A ) 2
1 + 2 tan 2 A cos 2 A = tan 4 A + s e c 4 A 1 + \frac{2\tan^2 A}{\cos^2 A} = \tan^4 A + sec^4 A 1 + c o s 2 A 2 t a n 2 A = tan 4 A + se c 4 A
( 1 − sin A − cos A ) 2 = 2 ( 1 − sin A ) ( 1 − cos A ) (1 - \sin A - \cos A)^2 = 2(1 - \sin A)(1 - \cos A) ( 1 − sin A − cos A ) 2 = 2 ( 1 − sin A ) ( 1 − cos A )
cot A + cosec A − 1 cot A − cosec A + 1 = 1 + cos A sin A \frac{\cot A + \cosec A - 1}{\cot A - \cosec A + 1} = \frac{1 + \cos A}{\sin A} c o t A − c o s e c A + 1 c o t A + c o s e c A − 1 = s i n A 1 + c o s A
( sin A + sec A ) 2 + ( cos A + cosec A ) 2 = ( 1 + sec A cosec A ) 2 (\sin A + \sec A)^2 + (\cos A + \cosec A)^2 = (1 + \sec A\cosec A)^2 ( sin A + sec A ) 2 + ( cos A + cosec A ) 2 = ( 1 + sec A cosec A ) 2
2 sin A tan A ( 1 − tan A ) + 2 sin A sec 2 A ( 1 + tan A ) 2 = 2 sin A 1 + tan A \frac{2\sin A\tan A(1 - \tan A) + 2\sin A\sec^2A}{(1 + \tan A)^2} = \frac{2\sin A}{1 + \tan A} ( 1 + t a n A ) 2 2 s i n A t a n A ( 1 − t a n A ) + 2 s i n A s e c 2 A = 1 + t a n A 2 s i n A
If 2 sin A = 2 − cos A , 2\sin A = 2 - \cos A, 2 sin A = 2 − cos A , find sin A . \sin A. sin A .
If 8 sin A = 4 + cos A , 8\sin A = 4 + \cos A, 8 sin A = 4 + cos A , find sin A . \sin A. sin A .
If tan A + sec A = 1.5 , \tan A + \sec A = 1.5, tan A + sec A = 1.5 , find sin A . \sin A. sin A .
If cot A + cosec A = 5 , \cot A + \cosec A = 5, cot A + cosec A = 5 , find cos A . \cos A. cos A .
If 3 sec 4 A + 8 = 10 sec 2 A , 3\sec^4 A + 8 = 10\sec^2A, 3 sec 4 A + 8 = 10 sec 2 A , find the value of tan A . \tan A. tan A .
If tan 2 A + sec A = 5 , \tan^2A + \sec A = 5, tan 2 A + sec A = 5 , find cos A . \cos A. cos A .
If tan A + cot A = 2 , \tan A + \cot A = 2, tan A + cot A = 2 , find sin A . \sin A. sin A .
If sec 2 A = 2 + 2 tan A , \sec^2A = 2 + 2\tan A, sec 2 A = 2 + 2 tan A , find tan A . \tan A. tan A .
If tan A = 2 x ( x + 1 ) 2 x + 1 , \tan A = \frac{2x(x + 1)}{2x + 1}, tan A = 2 x + 1 2 x ( x + 1 ) , find sin A \sin A sin A and cos A . \cos A. cos A .
If 3 sin A + 5 cos A = 5 , 3\sin A + 5\cos A = 5, 3 sin A + 5 cos A = 5 , show that 5 sin A − 3 cos A = ± 3 5\sin A - 3\cos A = \pm 3 5 sin A − 3 cos A = ± 3
If sec A + tan A = sec A − tan A \sec A + \tan A = \sec A - \tan A sec A + tan A = sec A − tan A prove that each side is ± 1 \pm 1 ± 1
If cos 4 A cos 2 B + sin 4 A sin 2 B = 1 , \frac{\cos^4 A}{\cos^2 B} + \frac{\sin^4 A}{\sin^2 B} = 1, c o s 2 B c o s 4 A + s i n 2 B s i n 4 A = 1 , prove that
sin 4 A + sin 4 B = 2 sin 2 A sin 2 B \sin^4A + \sin^4B = 2\sin^2A \sin^2B sin 4 A + sin 4 B = 2 sin 2 A sin 2 B
cos 4 B cos 2 A + sin 4 B sin 2 A = 1 , \frac{\cos^4 B}{\cos^2 A} + \frac{\sin^4 B}{\sin^2 A} = 1, c o s 2 A c o s 4 B + s i n 2 A s i n 4 B = 1 ,
If cos A + sin A = 2 cos A , \cos A + \sin A = \sqrt{2}\cos A, cos A + sin A = 2 cos A , prove that cos A − sin A = ± 2 sin A \cos A - \sin A = \pm \sqrt{2}\sin A cos A − sin A = ± 2 sin A
If a cos A − b sin A = c , a\cos A - b\sin A = c, a cos A − b sin A = c , prove that a sin A + b cos A = a 2 + b 2 − c 2 a\sin A + b\cos A = \sqrt{a^2 + b ^2 - c^2} a sin A + b cos A = a 2 + b 2 − c 2
If 1 − sin A = 1 + sin A , 1 - \sin A = 1 + \sin A, 1 − sin A = 1 + sin A , then prove that value of each side is ± cos A \pm \cos A ± cos A
If sin 4 A + sin 2 A = 1 , \sin^4 A + \sin^2 A = 1, sin 4 A + sin 2 A = 1 , prove that
1 tan 4 A + 1 tan 2 A = 1 \frac{1}{\tan^4 A} + \frac{1}{\tan^2A} = 1 t a n 4 A 1 + t a n 2 A 1 = 1
tan 4 A − tan 2 = 1 \tan^4A - \tan^2 = 1 tan 4 A − tan 2 = 1
If cos 2 A − sin 2 A = tan 2 B , \cos^2A - \sin^2 A = \tan^2 B, cos 2 A − sin 2 A = tan 2 B , prove that 2 cos 2 B − 1 = cos 2 B − sin 2 B = tan 2 A 2\cos^2B - 1 = \cos^2B - \sin^2B = \tan^2A 2 cos 2 B − 1 = cos 2 B − sin 2 B = tan 2 A
If sin A + cosec A = 2 , \sin A + \cosec A = 2, sin A + cosec A = 2 , then prove that sin n A + cosec n A = 2 \sin^nA + \cosec^nA = 2 sin n A + cosec n A = 2
If tan 2 A = 1 − e 2 , \tan^2 A = 1 - e^2, tan 2 A = 1 − e 2 , prove that sec A + tan 3 A cosec A = ( 2 − e 2 ) 3 2 \sec A + \tan^3A\cosec A = (2 - e^2)^\frac{3}{2} sec A + tan 3 A cosec A = ( 2 − e 2 ) 2 3
Eliminate A A A between the equations a sec A + b tan A + c = 0 a\sec A + b\tan A + c = 0 a sec A + b tan A + c = 0 and p sec A + q tan A + r = 0 p\sec A + q\tan A + r = 0 p sec A + q tan A + r = 0
If cosec A − sin A = m \cosec A - \sin A = m cosec A − sin A = m and sec A − cos A = n , \sec A - \cos A = n, sec A − cos A = n , elimiate A A A
Is the equation sec 2 A = 4 x y ( x + y ) 2 \sec^2 A = \frac{4xy}{(x + y)^2} sec 2 A = ( x + y ) 2 4 x y possible for real values of x x x and y y y ?
Show that the equation sin A = x + 1 x \sin A = x + \frac{1}{x} sin A = x + x 1 is imossible for real values of x . x. x .
If sec A − tan A = p , p ≠ 0 , \sec A - \tan A = p, p\neq 0, sec A − tan A = p , p = 0 , find tan A , sec A \tan A, \sec A tan A , sec A and sin A . \sin A. sin A .
If sec A = p + 1 4 p , \sec A = p + \frac{1}{4p}, sec A = p + 4 p 1 , show that sec A + tan A = 2 p \sec A + \tan A = 2p sec A + tan A = 2 p or 1 2 p . \frac{1}{2p}. 2 p 1 .
If sin A sin B = p , cos A cos B = q , \frac{\sin A}{\sin B} = p, \frac{\cos A}{\cos B} = q, s i n B s i n A = p , c o s B c o s A = q , find tan A \tan A tan A and tan B . \tan B. tan B .
If sin A sin B = 2 , tan A tan B = 3 , \frac{\sin A}{\sin B} = \sqrt{2}, \frac{\tan A}{\tan B}= \sqrt{3}, s i n B s i n A = 2 , t a n B t a n A = 3 , find A A A and B . B. B .
If tan A + cot A = 2 , \tan A + \cot A = 2, tan A + cot A = 2 , find sin A . \sin A. sin A .
If m = tan A + sin A m = \tan A + \sin A m = tan A + sin A and n = tan A − sin A , n = \tan A - \sin A, n = tan A − sin A , prove that m 2 − n 2 = 4 m n . m^2 - n^2 = 4\sqrt{mn}. m 2 − n 2 = 4 mn .
If sin A + cos A = m \sin A + \cos A = m sin A + cos A = m and sec A + cosec A = n , \sec A + \cosec A = n, sec A + cosec A = n , prove that n ( m 2 − 1 ) = 2 m . n(m^2 - 1) = 2m. n ( m 2 − 1 ) = 2 m .
If x sin 3 A + y cos 3 A = sin A cos A x\sin^3 A + y\cos^3 A = \sin A\cos A x sin 3 A + y cos 3 A = sin A cos A and x sin A − y cos A = 0 , x\sin A - y\cos A = 0, x sin A − y cos A = 0 , prove that x 2 + y 2 = 1 x^2 + y^2 = 1 x 2 + y 2 = 1
Prove that sin 2 A = ( x + y ) 2 4 x y \sin^2A = \frac{(x + y)^2}{4xy} sin 2 A = 4 x y ( x + y ) 2 is possible for real values of x x x and y y y only when x = y x =
y x = y and x , y ≠ 0 x,y \neq 0 x , y = 0