6. Trigonometrical Ratios of Angle and Sign
6.1. Values of Trigonometrical Ratios for Some Useful Angles
6.1.1. Angle of 4 5 ∘ 45^\circ 4 5 ∘
Consider the above figure, which is a right-angle triangle, drawn so that ∠ O M P = 9 0 ∘ \angle OMP = 90^\circ ∠ OMP = 9 0 ∘ and ∠ M O P = 4 5 ∘ . \angle MOP =
45^\circ. ∠ MOP = 4 5 ∘ . We know that sum of all angles of a triangle is equal to 18 0 ∘ . 180^\circ. 18 0 ∘ . Thus,
∠ O P M = 18 0 ∘ − ∠ M O P − ∠ O M P = 18 0 ∘ − 9 0 ∘ − 4 5 ∘ = 4 5 ∘ \angle OPM = 180^\circ - \angle MOP - \angle OMP = 180^\circ - 90^\circ - 45^\circ = 45^\circ ∠ OPM = 18 0 ∘ − ∠ MOP − ∠ OMP = 18 0 ∘ − 9 0 ∘ − 4 5 ∘ = 4 5 ∘
∴ O M = M P . \therefore OM = MP. ∴ OM = MP . Let O P = 2 a , OP = 2a, OP = 2 a , then from Pythogoras theorem, we can write
4 a 2 = O P 2 = O M 2 + M P 2 = 2. O M 2 ⇒ O M = a 2 = M P 4a^2 = OP^2 = OM^2 + MP^2 = 2.OM^2\Rightarrow OM = a\sqrt{2} = MP 4 a 2 = O P 2 = O M 2 + M P 2 = 2. O M 2 ⇒ OM = a 2 = MP
sin 4 5 ∘ = M P O P = a 2 2 a = 1 2 \sin 45^\circ = \frac{MP}{OP} = \frac{a\sqrt{2}}{2a} = \frac{1}{\sqrt{2}} sin 4 5 ∘ = OP MP = 2 a a 2 = 2 1
Other trigonometric ratios can be deduced easily from this.
6.1.2. Angle of 3 0 ∘ 30^\circ 3 0 ∘ and 5 0 ∘ 50^\circ 5 0 ∘
Consider an equilateral △ O M P \triangle OMP △ OMP . Let the sides O M , O P , M P OM, OP, MP OM , OP , MP be each 2 a 2a 2 a . We draw a bisector of
∠ M O P \angle MOP ∠ MOP which will be a perpendicular bisector of M P MP MP at X X X because the triangle is equilateral. Thus,
M X = a . MX = a. MX = a . Thus, in △ O M X , O M = 2 a , M X = a , ∠ M O X = 3 0 ∘ , ∠ O X M = 9 0 ∘ \triangle OMX, OM = 2a, MX = a, \angle MOX = 30^\circ, \angle OXM = 90^\circ △ OMX , OM = 2 a , MX = a , ∠ MOX = 3 0 ∘ , ∠ OXM = 9 0 ∘ because each angle is
6 0 ∘ 60^\circ 6 0 ∘ in an equilateral triangle.
sin M O X = M X O M = 1 2 ⇒ sin 3 0 ∘ = 1 2 \sin MOX = \frac{MX}{OM} = \frac{1}{2} \Rightarrow \sin 30^\circ = \frac{1}{2} sin MOX = OM MX = 2 1 ⇒ sin 3 0 ∘ = 2 1
Similarly, ∠ O M X = 6 0 ∘ \angle OMX = 60^\circ ∠ OMX = 6 0 ∘ because sum of all angles of a triangle is 18 0 ∘ 180^\circ 18 0 ∘
cos O M X = M X O M = 1 2 ⇒ cos 6 0 ∘ = 1 2 \cos OMX = \frac{MX}{OM} = \frac{1}{2}\Rightarrow \cos 60^\circ = \frac{1}{2} cos OMX = OM MX = 2 1 ⇒ cos 6 0 ∘ = 2 1
All other trigonometric ratios for these can be foun from these two.
6.1.3. Angle of 0 ∘ 0^\circ 0 ∘
Consider the △ M O P \triangle MOP △ MOP such that the side MP is smaller than any quantiry we can assign i.e. what we denote by 0. Thus,
∠ M O P \angle MOP ∠ MOP is what is called approaching 0 0 0 or lim x → 0 \lim_{x \to 0} lim x → 0 in terms of Calculus. Why we have to take such
a value is because if any anngle of a triangle is equal to 0 ∘ 0^\circ 0 ∘ then the triagle won’t exist. Thus these values are
limiting values as you will learn in Calculus.
However, in this case sin 0 ∘ = M P O P = 0 O P = 0. \sin 0^\circ = \frac{MP}{OP} = \frac{0}{OP} = 0. sin 0 ∘ = OP MP = OP 0 = 0. Now other trigonometric ratios can be found with
ease.
6.1.4. Angle of 9 0 ∘ 90^\circ 9 0 ∘
In the previous figure as ∠ O M P \angle OMP ∠ OMP will approach 0 ∘ , 0^\circ, 0 ∘ , the ∠ O P M \angle OPM ∠ OPM will approach 9 0 ∘ . 90^\circ. 9 0 ∘ .
Also, O P OP OP will approach the length of O M . OM. OM . Similar to previos case in right-angle triangle if one angle(other than
right angle) approaches 0 ∘ 0^\circ 0 ∘ the other one will approach 9 0 ∘ 90^\circ 9 0 ∘ and at that value the triangle will cease to
exist.
Thus, sin 9 0 ∘ = O M O P = O P O P = 1. \sin 90^\circ = \frac{OM}{OP} = \frac{OP}{OP} = 1. sin 9 0 ∘ = OP OM = OP OP = 1. Now it is trivial to find other trigonometric ratios.
Given below is a table of most useful angles:
Values of useful angles
Angle
0 ∘ 0^\circ 0 ∘
3 0 ∘ 30^\circ 3 0 ∘
4 5 ∘ 45^\circ 4 5 ∘
6 0 ∘ 60^\circ 6 0 ∘
9 0 ∘ 90^\circ 9 0 ∘
sin \sin sin
0 0 0
1 2 \frac{1}{2} 2 1
1 2 \frac{1}{\sqrt{2}} 2 1
3 2 \frac{\sqrt{3}}{2} 2 3
1 1 1
cos \cos cos
1 1 1
3 2 \frac{\sqrt{3}}{2} 2 3
1 2 \frac{1}{\sqrt{2}} 2 1
1 2 \frac{1}{\sqrt{2}} 2 1
0 0 0
tan \tan tan
0 0 0
1 3 \frac{1}{\sqrt{3}} 3 1
1 1 1
3 \sqrt{3} 3
∞ \infty ∞
cosec \cosec cosec
∞ \infty ∞
2 2 2
2 \sqrt{2} 2
2 3 \frac{2}{\sqrt{3}} 3 2
1 1 1
sec \sec sec
1 1 1
2 3 \frac{2}{\sqrt{3}} 3 2
2 \sqrt{2} 2
2 2 2
∞ \infty ∞
cot \cot cot
∞ \infty ∞
3 \sqrt{3} 3
1 1 1
1 3 \frac{1}{\sqrt{3}} 3 1
0 0 0
6.2. Complementary Angles
Angles are said to be complementary if their sum is equal to one right angle i.e 9 0 ∘ . 90^\circ. 9 0 ∘ . Thus, if measure of one angle is
θ \theta θ the other will automatically be 9 0 ∘ − θ . 90^\circ - \theta. 9 0 ∘ − θ .
Consider the above figure. △ O M P \triangle OMP △ OMP is a right-angle triangle whose ∠ O M P \angle OMP ∠ OMP is a right angle. Since the sum
of all angles is equal to 18 0 ∘ , 180^\circ, 18 0 ∘ , therefore sum of ∠ M O P \angle MOP ∠ MOP and ∠ M P O \angle MPO ∠ MPO will be equal to one right
angle or 9 0 ∘ 90^\circ 9 0 ∘ i.e. they are complementatry angles.
Let ∠ M O P = θ \angle MOP = \theta ∠ MOP = θ then ∠ M P O = 9 0 ∘ − θ . \angle MPO = 90^\circ - \theta. ∠ MPO = 9 0 ∘ − θ . When ∠ M P O \angle MPO ∠ MPO is considered M P MP MP
becomes the base and O M OM OM becomes the perpendicular.
Thus, sin ( 9 0 ∘ − θ ) = sin M P O = M O P O = cos M O P = cos θ \sin(90^\circ - \theta) = \sin MPO = \frac{MO}{PO} = \cos MOP = \cos \theta sin ( 9 0 ∘ − θ ) = sin MPO = PO MO = cos MOP = cos θ
cos ( 9 0 ∘ − θ ) = sin M P O = P M P M = sin M O P = sin θ \cos(90^\circ - \theta) = \sin MPO = \frac{PM}{PM} = \sin MOP = \sin \theta cos ( 9 0 ∘ − θ ) = sin MPO = PM PM = sin MOP = sin θ
tan ( 9 0 ∘ − θ ) = tan M P O = O M M P = cot M O P = cot θ \tan(90^\circ - \theta) = \tan MPO = \frac{OM}{MP} = \cot MOP = \cot \theta tan ( 9 0 ∘ − θ ) = tan MPO = MP OM = cot MOP = cot θ
Similarly, cot ( 9 0 ∘ − θ ) = tan θ \cot(90^\circ - \theta) = \tan \theta cot ( 9 0 ∘ − θ ) = tan θ
cosec ( 9 0 ∘ − θ ) = sec θ \cosec(90^\circ - \theta) = \sec \theta cosec ( 9 0 ∘ − θ ) = sec θ
sec ( 9 0 ∘ − θ ) = cosec θ \sec(90^\circ - \theta) = \cosec \theta sec ( 9 0 ∘ − θ ) = cosec θ
6.3. Supplementary Angles
Angles are said to be supplementary if their sum is equal to two right angles i.e. 18 0 ∘ . 180^\circ. 18 0 ∘ . Thus, if measure of one angle
is θ \theta θ and oher will automaticaly be 18 0 ∘ − θ . 180^\circ - \theta. 18 0 ∘ − θ .
Conside the above figure which include the angles of 18 0 ∘ + θ . 180^\circ + \theta. 18 0 ∘ + θ . In each figure O M OM OM and O M ′ OM' O M ′ are
drawn in different directions, while M P MP MP and M ′ P ′ M'P' M ′ P ′ are drawn in the same direction, so that
O M ′ = − O M OM' = -OM O M ′ = − OM and M ′ P ′ = M P M'P' = MP M ′ P ′ = MP
Hencem we can say that
sin ( 18 0 ∘ − θ ) = sin M O P ′ = M ′ P ′ O P ′ = M P O P = sin θ \sin(180^\circ - \theta) = \sin MOP' = \frac{M'P'}{OP'} = \frac{MP}{OP} = \sin \theta sin ( 18 0 ∘ − θ ) = sin MO P ′ = O P ′ M ′ P ′ = OP MP = sin θ
cos ( 18 0 ∘ − θ ) = cos M O P ′ = O M ′ O P ′ = − O M O P = − cos θ \cos(180^\circ - \theta) = \cos MOP' = \frac{OM'}{OP'} = \frac{-OM}{OP} = -\cos \theta cos ( 18 0 ∘ − θ ) = cos MO P ′ = O P ′ O M ′ = OP − OM = − cos θ
tan ( 18 0 ∘ − θ ) = tan M O P ′ = O M ′ M ′ P ′ = − O M M P = − tan θ \tan(180^\circ - \theta) = \tan MOP' = \frac{OM'}{M'P'} = \frac{-OM}{MP} = -\tan \theta tan ( 18 0 ∘ − θ ) = tan MO P ′ = M ′ P ′ O M ′ = MP − OM = − tan θ
Similarly, cot ( 18 0 ∘ − θ ) = − cot θ \cot(180^\circ - \theta) = -\cot \theta cot ( 18 0 ∘ − θ ) = − cot θ
sec ( 18 0 ∘ − θ ) = − sec θ \sec(180^\circ - \theta) = -\sec \theta sec ( 18 0 ∘ − θ ) = − sec θ
cosec ( 18 0 ∘ − θ ) = cosec θ \cosec(180^\circ - \theta) = \cosec \theta cosec ( 18 0 ∘ − θ ) = cosec θ
6.4. Angles of − θ -\theta − θ
Consider the above diagram which plots angles of θ \theta θ and − θ . -\theta. − θ . Note that M P MP MP and M P ′ MP' M P ′ are equal
in magnitude but are opposite in sign. Thus, we have
sin ( − θ ) = M P ′ O P ′ = − M P O P = − sin θ \sin(-\theta) = \frac{MP'}{OP'} = \frac{-MP}{OP} = -\sin\theta sin ( − θ ) = O P ′ M P ′ = OP − MP = − sin θ
cos ( − θ ) = O M M P ′ = O M O P = cos θ \cos(-\theta) = \frac{OM}{MP'} = \frac{OM}{OP} = \cos\theta cos ( − θ ) = M P ′ OM = OP OM = cos θ
tan ( − θ ) = M P ′ O M = − M P O M = − tan θ \tan(-\theta) = \frac{MP'}{OM} = \frac{-MP}{OM} = -\tan\theta tan ( − θ ) = OM M P ′ = OM − MP = − tan θ
Similalry, cot ( − θ ) = − cot θ \cot(-\theta) = -\cot\theta cot ( − θ ) = − cot θ
sec ( − θ ) = sec θ \sec(-\theta) = \sec\theta sec ( − θ ) = sec θ
cosec ( − θ ) = − cosec θ \cosec(-\theta) = -\cosec\theta cosec ( − θ ) = − cosec θ
6.5. Angles of 9 0 ∘ − θ 90^\circ -\theta 9 0 ∘ − θ and 9 0 ∘ + θ 90^\circ+\theta 9 0 ∘ + θ
Similarly it can be proven that(diagram has been left as an exercise)
sin ( 9 0 ∘ − θ ) = cos θ \sin(90^\circ -\theta) = \cos\theta sin ( 9 0 ∘ − θ ) = cos θ
cos ( 9 0 ∘ − θ ) = sin θ \cos(90^\circ -\theta) = \sin\theta cos ( 9 0 ∘ − θ ) = sin θ
tan ( 9 0 ∘ − θ ) = cot θ \tan(90^\circ -\theta) = \cot\theta tan ( 9 0 ∘ − θ ) = cot θ
cot ( 9 0 ∘ − θ ) = tan θ \cot(90^\circ -\theta) = \tan\theta cot ( 9 0 ∘ − θ ) = tan θ
sec ( 9 0 ∘ − θ ) = cosec θ \sec(90^\circ -\theta) = \cosec\theta sec ( 9 0 ∘ − θ ) = cosec θ
cosec ( 9 0 ∘ − θ ) = sec θ \cosec(90^\circ -\theta) = \sec\theta cosec ( 9 0 ∘ − θ ) = sec θ
sin ( 9 0 ∘ + θ ) = cos θ \sin(90^\circ+\theta) = \cos\theta sin ( 9 0 ∘ + θ ) = cos θ
cos ( 9 0 ∘ + θ ) = − sin θ \cos(90^\circ+\theta) = -\sin\theta cos ( 9 0 ∘ + θ ) = − sin θ
tan ( 9 0 ∘ + θ ) = − cot θ \tan(90^\circ+\theta) = -\cot\theta tan ( 9 0 ∘ + θ ) = − cot θ
cot ( 9 0 ∘ + θ ) = − tan θ \cot(90^\circ+\theta) = -\tan\theta cot ( 9 0 ∘ + θ ) = − tan θ
sec ( 9 0 ∘ + θ ) = − cosec θ \sec(90^\circ+\theta) = -\cosec\theta sec ( 9 0 ∘ + θ ) = − cosec θ
cosec ( 9 0 ∘ + θ ) = sec θ \cosec(90^\circ+\theta) = \sec\theta cosec ( 9 0 ∘ + θ ) = sec θ
6.6. Angles of 18 0 ∘ + θ 180^\circ + \theta 18 0 ∘ + θ
Angles of 18 0 ∘ + θ , 27 0 ∘ − θ , 27 0 ∘ + t h e t a 180^\circ + \theta, 270^\circ -\theta, 270^\circ + theta 18 0 ∘ + θ , 27 0 ∘ − θ , 27 0 ∘ + t h e t a can be found by using previous relations. For example,
sin ( 180 + θ ) = sin ( 90 + 90 + θ ) = cos ( 90 + θ ) = − sin θ \sin(180 + \theta) = \sin(90 + 90 + \theta) = \cos(90 + \theta) = -\sin\theta sin ( 180 + θ ) = sin ( 90 + 90 + θ ) = cos ( 90 + θ ) = − sin θ
cos ( 180 + θ ) = cos ( 90 + 90 + θ ) = − sin ( 90 + θ ) = − cos θ \cos(180 + \theta) = \cos(90 + 90 + \theta) = -\sin(90 + \theta) = -\cos\theta cos ( 180 + θ ) = cos ( 90 + 90 + θ ) = − sin ( 90 + θ ) = − cos θ
tan ( 180 + θ ) = tan ( 90 + 90 + θ ) = − cos ( 90 + θ ) = tan θ \tan(180 + \theta) = \tan(90 + 90 + \theta) = -\cos(90 + \theta) = \tan\theta tan ( 180 + θ ) = tan ( 90 + 90 + θ ) = − cos ( 90 + θ ) = tan θ
Similarly, cot ( 180 + θ ) = cot θ \cot(180 + \theta) = \cot\theta cot ( 180 + θ ) = cot θ
sec ( 180 + θ ) = − sec θ \sec(180 + \theta) = -\sec\theta sec ( 180 + θ ) = − sec θ
cosec ( 180 + θ ) = − cosec θ \cosec(180 + \theta) = -\cosec\theta cosec ( 180 + θ ) = − cosec θ
6.7. Angles of 36 0 ∘ + θ 360^\circ + \theta 36 0 ∘ + θ
For angles of θ \theta θ the radius vector makes an angle of θ \theta θ with initial side. For angles of 36 0 ∘ + θ 360^\circ +
\theta 36 0 ∘ + θ it will complete a full revolution and then make an angle of θ \theta θ with initial side. Thus, the trigonometrical
ratios for an angle of 36 0 ∘ + θ 360^\circ + \theta 36 0 ∘ + θ are the same as those for θ . \theta. θ .
It is clear that angle will remain θ \theta θ for any multiple of 36 0 ∘ . 360^\circ. 36 0 ∘ .
6.8. Problems
If A = 3 0 ∘ , A = 30^\circ, A = 3 0 ∘ , verify that
cos 2 A = cos 2 A − sin 2 A = 2 cos 2 A − 1 \cos 2A = \cos^2A - \sin^2A = 2\cos^2A - 1 cos 2 A = cos 2 A − sin 2 A = 2 cos 2 A − 1
sin 2 A = 2 sin A cos A \sin 2A = 2\sin A\cos A sin 2 A = 2 sin A cos A
cos 3 A = 4 cos 3 A − 3 cos A \cos 3A = 4\cos^3A - 3\cos A cos 3 A = 4 cos 3 A − 3 cos A
sin 3 A = 3 sin A − 4 sin 3 A \sin 3A = 3\sin A - 4\sin^3A sin 3 A = 3 sin A − 4 sin 3 A
tan 2 A = 2 tan A 1 − tan 2 A \tan 2A = \frac{2\tan A}{1 - \tan^2 A} tan 2 A = 1 − t a n 2 A 2 t a n A
If A = 4 5 ∘ , A = 45^\circ, A = 4 5 ∘ , verify that
sin 2 A = 2 sin A cos A \sin 2A = 2\sin A\cos A sin 2 A = 2 sin A cos A
cos 2 A = 1 − 2 sin 2 A \cos 2A = 1 - 2\sin^2A cos 2 A = 1 − 2 sin 2 A
tan 2 A = 2 tan A 1 − tan 2 A \tan 2A = \frac{2\tan A}{1 - \tan^2A} tan 2 A = 1 − t a n 2 A 2 t a n A
Verify that
sin 2 3 0 ∘ + sin 2 4 5 ∘ + sin 2 6 0 ∘ = 3 2 \sin^230^\circ + \sin^245^\circ + \sin^260^\circ = \frac{3}{2} sin 2 3 0 ∘ + sin 2 4 5 ∘ + sin 2 6 0 ∘ = 2 3
tan 2 3 0 ∘ + tan 2 4 5 ∘ + tan 2 6 0 ∘ = 4 1 3 \tan^230^\circ + \tan^245^\circ + \tan^260^\circ = 4\frac{1}{3} tan 2 3 0 ∘ + tan 2 4 5 ∘ + tan 2 6 0 ∘ = 4 3 1
sin 3 0 ∘ cos 6 0 ∘ + sin 6 0 ∘ cos 3 0 ∘ = 1 \sin 30^\circ\cos 60^\circ + \sin 60^\circ\cos 30^\circ = 1 sin 3 0 ∘ cos 6 0 ∘ + sin 6 0 ∘ cos 3 0 ∘ = 1
cos 4 5 ∘ cos 6 0 ∘ − sin 4 5 ∘ sin 6 0 ∘ = − 3 − 1 2 2 \cos 45^\circ\cos 60^\circ - \sin 45^\circ\sin 60^\circ = -\frac{\sqrt{3} - 1}{2\sqrt{2}} cos 4 5 ∘ cos 6 0 ∘ − sin 4 5 ∘ sin 6 0 ∘ = − 2 2 3 − 1
cosec 2 4 5 ∘ . sec 2 3 0 ∘ . sin 2 9 0 ∘ . cos 6 0 ∘ = 1 1 3 \cosec^245^\circ.\sec^230^\circ.\sin^290^\circ.\cos 60^\circ = 1\frac{1}{3} cosec 2 4 5 ∘ . sec 2 3 0 ∘ . sin 2 9 0 ∘ . cos 6 0 ∘ = 1 3 1
4 cot 2 4 5 ∘ − sec 2 6 0 ∘ + sin 2 3 0 ∘ = 1 4 4\cot^245^\circ-\sec^260^\circ + \sin^230^\circ = \frac{1}{4} 4 cot 2 4 5 ∘ − sec 2 6 0 ∘ + sin 2 3 0 ∘ = 4 1
Prove that
sin 42 0 ∘ cos 39 0 ∘ + cos ( − 30 0 ∘ ) sin ( − 33 0 ∘ ) = 1 \sin 420^\circ\cos 390^\circ + \cos(-300^\circ)\sin(-330^\circ) = 1 sin 42 0 ∘ cos 39 0 ∘ + cos ( − 30 0 ∘ ) sin ( − 33 0 ∘ ) = 1
cos 57 0 ∘ sin 51 0 ∘ − sin 33 0 ∘ cos 39 0 ∘ = 0 \cos 570^\circ\sin 510^\circ -\sin 330^\circ\cos 390^\circ = 0 cos 57 0 ∘ sin 51 0 ∘ − sin 33 0 ∘ cos 39 0 ∘ = 0
What are the values of cos A − sin A \cos A - \sin A cos A − sin A and tan A + cot A \tan A + \cot A tan A + cot A when A has the values
π 3 \frac{\pi}{3} 3 π
2 π 3 \frac{2\pi}{3} 3 2 π
5 π 4 \frac{5\pi}{4} 4 5 π
7 π 4 \frac{7\pi}{4} 4 7 π
11 π 3 \frac{11\pi}{3} 3 11 π
What values between 0 ∘ 0^\circ 0 ∘ and 36 0 ∘ 360^\circ 36 0 ∘ may A A A have when
sin A = 1 2 \sin A = \frac{1}{\sqrt{2}} sin A = 2 1
cos A = − 1 2 \cos A = -\frac{1}{2} cos A = − 2 1
tan A = − 1 \tan A = -1 tan A = − 1
cot A = − 3 \cot A = -\sqrt{3} cot A = − 3
sec A = − 2 3 \sec A = -\frac{2}{\sqrt{3}} sec A = − 3 2
cosec A = − 2 \cosec A = -2 cosec A = − 2
Express in terms of the ratios of a positive angle, which is less than 4 5 ∘ , 45^\circ, 4 5 ∘ , the quantities
sin ( − 6 5 ∘ ) \sin(-65^\circ) sin ( − 6 5 ∘ )
cos ( − 8 4 ∘ ) \cos(-84^\circ) cos ( − 8 4 ∘ )
tan 13 7 ∘ \tan 137^\circ tan 13 7 ∘
sin 16 8 ∘ \sin 168^\circ sin 16 8 ∘
cos 28 7 ∘ \cos 287^\circ cos 28 7 ∘
tan ( − 24 6 ∘ ) \tan(-246^\circ) tan ( − 24 6 ∘ )
sin 84 3 ∘ \sin 843^\circ sin 84 3 ∘
cos ( − 92 8 ∘ ) \cos(-928^\circ) cos ( − 92 8 ∘ )
tan 114 5 ∘ \tan 1145^\circ tan 114 5 ∘
cos 141 0 ∘ \cos 1410^\circ cos 141 0 ∘
cot ( − 105 4 ∘ ) \cot(-1054^\circ) cot ( − 105 4 ∘ )
sec 132 7 ∘ \sec 1327^\circ sec 132 7 ∘
cosec ( − 75 6 ∘ ) \cosec (-756^\circ) cosec ( − 75 6 ∘ )
What sign has sin A + cos A \sin A + \cos A sin A + cos A for the following values of A A A ?
14 0 ∘ 140^\circ 14 0 ∘
27 8 ∘ 278^\circ 27 8 ∘
− 35 6 ∘ -356^\circ − 35 6 ∘
− 112 5 ∘ -1125^\circ − 112 5 ∘
What sign has sin A − cos A \sin A - \cos A sin A − cos A for the following values of A A A ?
21 5 ∘ 215^\circ 21 5 ∘
82 5 ∘ 825^\circ 82 5 ∘
− 63 4 ∘ -634^\circ − 63 4 ∘
− 45 7 ∘ -457^\circ − 45 7 ∘
Find the sine and cosine of all angles in the first four quadrants whose tangents are equal to cos 13 5 ∘ . \cos 135^\circ. cos 13 5 ∘ .
Prove that
sin ( 27 0 ∘ + A ) = − cos A \sin(270^\circ + A) = -\cos A sin ( 27 0 ∘ + A ) = − cos A and tan ( 27 0 ∘ + A ) = − cot A \tan(270^\circ + A) = -\cot A tan ( 27 0 ∘ + A ) = − cot A
cos ( 27 0 ∘ − A ) = − sin A \cos(270^\circ - A) = -\sin A cos ( 27 0 ∘ − A ) = − sin A and cot ( 27 0 ∘ − A ) = tan A \cot(270^\circ - A) = \tan A cot ( 27 0 ∘ − A ) = tan A
cos A + sin ( 27 0 ∘ + A ) − sin ( 27 0 ∘ − A ) + cos ( 18 0 ∘ + A ) = 0 \cos A + \sin(270^\circ + A) - \sin(270^\circ - A) + \cos(180^\circ + A) = 0 cos A + sin ( 27 0 ∘ + A ) − sin ( 27 0 ∘ − A ) + cos ( 18 0 ∘ + A ) = 0
sec ( 27 0 ∘ − A ) sec ( 9 0 ∘ − A ) − tan ( 27 0 ∘ − A ) tan ( 9 0 ∘ + A ) + 1 = 0 \sec(270^\circ - A)\sec(90^\circ - A) - \tan(270^\circ - A)\tan(90^\circ + A) + 1 = 0 sec ( 27 0 ∘ − A ) sec ( 9 0 ∘ − A ) − tan ( 27 0 ∘ − A ) tan ( 9 0 ∘ + A ) + 1 = 0
cot A + tan ( 18 0 ∘ + A ) + tan ( 9 0 ∘ + A ) + tan ( 36 0 ∘ − A ) = 0 \cot A + \tan(180^\circ + A) + \tan(90^\circ + A) + \tan(360^\circ - A) = 0 cot A + tan ( 18 0 ∘ + A ) + tan ( 9 0 ∘ + A ) + tan ( 36 0 ∘ − A ) = 0
Find the value of 3 tan 2 4 5 ∘ − sin 2 6 0 ∘ − 1 2 cot 2 3 0 ∘ + 1 8 sec 2 4 5 ∘ 3\tan^245^\circ - \sin^260^\circ - \frac{1}{2}\cot^230^\circ + \frac{1}{8}\sec^245^\circ 3 tan 2 4 5 ∘ − sin 2 6 0 ∘ − 2 1 cot 2 3 0 ∘ + 8 1 sec 2 4 5 ∘
Simplify sin 30 0 ∘ . tan 33 0 ∘ . sec 42 0 ∘ tan 13 5 ∘ . sin 21 0 ∘ . sec 31 5 ∘ \frac{\sin 300^\circ.\tan 330^\circ.\sec 420^\circ}{\tan 135^\circ.\sin 210^\circ.\sec 315^\circ} t a n 13 5 ∘ . s i n 21 0 ∘ . s e c 31 5 ∘ s i n 30 0 ∘ . t a n 33 0 ∘ . s e c 42 0 ∘
Show that tan 1 ∘ tan 2 ∘ … tan 8 9 ∘ = 1 \tan 1^\circ\tan 2^\circ \ldots \tan 89^\circ = 1 tan 1 ∘ tan 2 ∘ … tan 8 9 ∘ = 1
Show that sin 2 5 ∘ + sin 2 1 0 ∘ + sin 2 1 5 ∘ + … + sin 2 9 0 ∘ = 9 1 2 \sin^25^\circ + \sin^210^\circ + \sin^215^\circ + \ldots + \sin^290^\circ = 9\frac{1}{2} sin 2 5 ∘ + sin 2 1 0 ∘ + sin 2 1 5 ∘ + … + sin 2 9 0 ∘ = 9 2 1
Find the value of cos 2 π 16 + cos 2 3 π 16 + cos 2 5 π 16 + cos 2 7 π 16 \cos^2\frac{\pi}{16} + \cos^2\frac{3\pi}{16} + \cos^2\frac{5\pi}{16} + \cos^2\frac{7\pi}{16} cos 2 16 π + cos 2 16 3 π + cos 2 16 5 π + cos 2 16 7 π
Find the value of the following:
sec 2 π 6 sec 2 π 4 + tan 2 π 3 sin 2 π 2 \sec^2\frac{\pi}{6}\sec^2\frac{\pi}{4} + \tan^2\frac{\pi}{3}\sin^2\frac{\pi}{2} sec 2 6 π sec 2 4 π + tan 2 3 π sin 2 2 π
cot 2 3 0 ∘ − 2 cos 2 6 0 ∘ − 3 4 sin 2 4 5 ∘ − 4 sin 2 3 0 ∘ \cot^230^\circ - 2\cos^260^\circ - \frac{3}{4}\sin^245^\circ - 4\sin^230^\circ cot 2 3 0 ∘ − 2 cos 2 6 0 ∘ − 4 3 sin 2 4 5 ∘ − 4 sin 2 3 0 ∘
sec 48 0 ∘ cosec 57 0 ∘ . tan 33 0 ∘ sin 60 0 ∘ . cos 66 0 ∘ . cot 40 5 ∘ \frac{\sec 480^\circ\cosec 570^\circ.\tan 330^\circ}{\sin 600^\circ.\cos 660^\circ.\cot 405^\circ} s i n 60 0 ∘ . c o s 66 0 ∘ . c o t 40 5 ∘ s e c 48 0 ∘ c o s e c 57 0 ∘ . t a n 33 0 ∘
If A = 3 0 ∘ , A = 30^\circ, A = 3 0 ∘ , show that cos 6 A + sin 6 A = 1 − sin 2 A cos 2 A \cos^6A + \sin^6A = 1 - \sin^2A\cos^2A cos 6 A + sin 6 A = 1 − sin 2 A cos 2 A
Show that ( tan π 4 + cot π 4 + sec π 4 ) ( tan π 4 + cot π 4 − sec π 4 ) = cosec 2 π 4 \left(\tan \frac{\pi}{4} + \cot \frac{\pi}{4} + \sec\frac{\pi}{4}\right)\left(\tan \frac{\pi}{4} + \cot
\frac{\pi}{4} - \sec \frac{\pi}{4}\right) = \cosec^2 \frac{\pi}{4} ( tan 4 π + cot 4 π + sec 4 π ) ( tan 4 π + cot 4 π − sec 4 π ) = cosec 2 4 π
Show that sin 2 6 ∘ + sin 6 2 1 2 ∘ + sin 2 1 8 ∘ + … + sin 2 8 4 ∘ + sin 2 9 0 ∘ = 8 \sin^26^\circ + \sin6^212^\circ + \sin^218^\circ + \ldots + \sin^284^\circ + \sin^290^\circ = 8 sin 2 6 ∘ + sin 6 2 1 2 ∘ + sin 2 1 8 ∘ + … + sin 2 8 4 ∘ + sin 2 9 0 ∘ = 8
Show that tan 9 ∘ . tan 2 7 ∘ . tan 4 5 ∘ . tan 6 3 ∘ . tan 8 1 ∘ = 1 \tan 9^\circ.\tan 27^\circ.\tan 45^\circ.\tan 63^\circ.\tan 81^\circ = 1 tan 9 ∘ . tan 2 7 ∘ . tan 4 5 ∘ . tan 6 3 ∘ . tan 8 1 ∘ = 1
Show that ∑ r = 1 9 sin 2 r π 18 = 5 \sum_{r = 1}^9 \sin^2\frac{r\pi}{18} = 5 ∑ r = 1 9 sin 2 18 r π = 5
If 4 n α = π , 4n\alpha = \pi, 4 n α = π , show that tan α tan 2 α tan 3 α . … . tan ( 2 n − 2 ) α tan ( 2 n − 1 ) α = 1 \tan\alpha\tan2\alpha\tan3\alpha. \ldots .\tan(2n - 2)\alpha\tan(2n - 1)\alpha = 1 tan α tan 2 α tan 3 α . … . tan ( 2 n − 2 ) α tan ( 2 n − 1 ) α = 1