7. Trigonometrical Ratios of Angle and Sign Solutions#

  1. Let us solve these one by one:

    1. cos2A=cos60=12\cos 2A = \cos 60^\circ = \frac{1}{2}

      cos2Asin2A=(32)2(12)2=3414=12\cos^2A - \sin^2A = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}

      2cos21=2.(32)21=2.341=122\cos^2 - 1 = 2.\left(\frac{\sqrt{3}}{2}\right)^2 - 1 = 2.\frac{3}{4} - 1 = \frac{1}{2}

    2. sin2A=sin60=32\sin 2A = \sin 60^\circ = \frac{\sqrt{3}}{2}

      2sinAcosA=2.12.32=322\sin A\cos A = 2.\frac{1}{2}.\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}

    3. cos3A=cos90=0\cos 3A = \cos 90^\circ = 0

      4cos3A3cosA=4.338332=04\cos^3A - 3\cos A = 4.\frac{3\sqrt{3}}{8} - 3\frac{\sqrt{3}}{2} = 0

    4. sin3A=sin90=1\sin 3A = \sin 90^\circ = 1

      3sinA4sin3A=3124.123=3212=13\sin A - 4\sin^3 A = 3\frac{1}{2} - 4. \frac{1}{2^3} = \frac{3}{2} - \frac{1}{2} = 1

    5. tan2A=tan60=3\tan 2A = \tan 60^\circ = \sqrt{3}

      2tanA1tan2A=2.13113=23.32=3\frac{2\tan A}{1 - \tan^2A} = \frac{2.\frac{1}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{2}{\sqrt{3}}.\frac{3}{2} = \sqrt{3}

  2. Let us solve these one by one:

    1. sin2A=sin90=1\sin 2A = \sin 90^\circ = 1

      2sinAcosA=2sin45cos45=2.12.12=12\sin A\cos A = 2\sin 45^\circ\cos 45^\circ = 2.\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}} = 1

    2. cos2A=cos90=0\cos 2A = \cos 90^\circ = 0

      12sin2A=12sin245=12.1(2)2=12.12=01 - 2\sin^2A = 1 - 2\sin^245^\circ = 1 - 2.\frac{1}{(\sqrt{2})^2} = 1 - 2.\frac{1}{2} = 0

    3. tan2A=tan90=\tan 2A = \tan 90^\circ = \infty

      2tanA1tan2A=2.1112=20=\frac{2\tan A}{1 - \tan^2A} = \frac{2.1}{1 - 1^2} = \frac{2}{0} = \infty

  3. L.H.S. =sin230+sin245+sin260= \sin^230^\circ + \sin^245^\circ + \sin^260^\circ

    =122+1(2)2+(3)222=14+12+34=32== \frac{1}{2^2} + \frac{1}{(\sqrt{2})^2} + \frac{(\sqrt{3})^2}{2^2} = \frac{1}{4} + \frac{1}{2} + \frac{3}{4} = \frac{3}{2} = R.H.S.

  4. L.H.S. =tan230+tan245+tan260= \tan^230^\circ + \tan^245^\circ + \tan^260^\circ

    =1(3)2+1+(3)2=13+1+3=413== \frac{1}{(\sqrt{3})^2} + 1 + (\sqrt{3})^2 = \frac{1}{3} + 1 + 3 = 4\frac{1}{3} = R.H.S.

  5. L.H.S. =sin30cos60+sin60cos30= \sin 30^\circ\cos 60^\circ + \sin 60^\circ\cos 30^\circ

    =1212+3232=14+34=1== \frac{1}{2}\frac{1}{2} + \frac{\sqrt{3}}{2}\frac{\sqrt{3}}{2} = \frac{1}{4} + \frac{3}{4} = 1 = R.H.S.

  6. L.H.S. =cos45cos60sin45sin60= \cos 45^\circ\cos 60^\circ - \sin 45^\circ\sin 60^\circ

    =12121232=122322= \frac{1}{\sqrt{2}}\frac{1}{2} - \frac{1}{\sqrt{2}}\frac{\sqrt{3}}{2} = \frac{1}{2\sqrt{2}} - \frac{\sqrt{3}}{2\sqrt{2}}

    =1322=3122== \frac{1 - \sqrt{3}}{2\sqrt{2}} = - \frac{\sqrt{3} - 1}{2\sqrt{2}} = R.H.S.

  7. L.H.S. =cosec245.sec230.sin290.cos60= \cosec^245^\circ.\sec^230^\circ.\sin^290^\circ.\cos 60^\circ

    =(2)2.22(3)2.12.12=2.43.1.12=43== (\sqrt{2})^2.\frac{2^2}{(\sqrt{3})^2}.1^2.\frac{1}{2} = 2.\frac{4}{3}.1.\frac{1}{2} = \frac{4}{3} = R.H.S.

  8. L.H.S. =4cot245sec260+sin230= 4\cot^245^\circ-\sec^260^\circ + \sin^230^\circ

    =4.1222+122=44+14=14== 4.1^2 - 2^2 + \frac{1}{2^2} = 4 - 4 + \frac{1}{4} = \frac{1}{4} = R.H.S.

  9. L.H.S. =sin420cos390+cos(300)sin(330)= \sin 420^\circ\cos 390^\circ + \cos(-300^\circ)\sin(-330^\circ)

    =sin(360+60)cos(360+30)+cos60sin30= \sin(360^\circ + 60^\circ)\cos(360^\circ + 30^\circ) + \cos 60^\circ\sin30^\circ

    =sin60cos30+cos60sin30=32.33+12.12=34+14=1== \sin 60\cos30^\circ + \cos 60^\circ\sin30^\circ = \frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{3} + \frac{1}{2}.\frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1 = R.H.S.

  10. L.H.S. =cos570sin510sin330cos390= \cos 570^\circ\sin 510^\circ -\sin 330^\circ\cos 390^\circ

    =cos(360+210)sin(360+150)sin(36030)cos(360+30)= \cos(360^\circ + 210^\circ)\sin(360^\circ + 150^\circ) - \sin(360^\circ - 30^\circ)\cos(360^\circ + 30^\circ)

    =cos(180+30)sin(18030)+sin30cos30= \cos(180^\circ + 30^\circ)\sin(180^\circ - 30^\circ) + \sin 30^\circ\cos 30^\circ

    =cos30sin30+sin30cos30= -\cos 30^\circ\sin 30^\circ + \sin 30^\circ\cos 30^\circ

    =0== 0 = R.H.S.

  11. cosπ3sinπ3=1232=132\cos \frac{\pi}{3} - \sin \frac{\pi}{3} = \frac{1}{2} - \frac{\sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2}

    tanπ3+cotπ3=3.+13=43\tan\frac{\pi}{3} + \cot\frac{\pi}{3} = \sqrt{3}. + \frac{1}{\sqrt{3}} = \frac{4}{\sqrt{3}}

  12. cos2π3sin2π3=cos(ππ3))sin(ππ3)\cos\frac{2\pi}{3} -\sin\frac{2\pi}{3} = \cos\left(\pi - \frac{\pi}{3})\right) - \sin\left(\pi - \frac{\pi}{3}\right)

    =cosπ3sinπ3=1232=1+32= -\cos \frac{\pi}{3} - \sin\frac{\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} = - \frac{1 + \sqrt{3}}{2}

    tan2π3+cot2π3=tan(ππ3)+cot(ππ3)\tan\frac{2\pi}{3} + \cot\frac{2\pi}{3} = \tan\left(\pi - \frac{\pi}{3}\right) + \cot\left(\pi - \frac{\pi}{3}\right)

    =tanπ3.cotπ3=313=43= -\tan \frac{\pi}{3}. -\cot \frac{\pi}{3} = -\sqrt{3} - \frac{1}{\sqrt{3}} = -\frac{4}{\sqrt{3}}

  13. cos5π4sin5π4=cos(π+π4)+sin(π+π4)\cos\frac{5\pi}{4} - \sin\frac{5\pi}{4} = \cos\left(\pi + \frac{\pi}{4}\right) + \sin \left(\pi + \frac{\pi}{4}\right)

    =cosπ4sinπ4=1212=2= -\cos \frac{\pi}{4} - \sin \frac{\pi}{4} = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\sqrt{2}

    tan5π4+cot5π4=tan(π+π4)+cot(π+π4)\tan \frac{5\pi}{4} + \cot \frac{5\pi}{4} = \tan\left(\pi + \frac{\pi}{4}\right) + \cot\left(\pi + \frac{\pi}{4}\right)

    =tanπ4+cotπ4=1+1=2= \tan \frac{\pi}{4} + \cot \frac{\pi}{4} = 1 + 1 = 2

  14. cos7π4+cos7π4=cos(π+3π4)+sin(π+3π4)\cos\frac{7\pi}{4} + \cos\frac{7\pi}{4} = \cos \left(\pi + \frac{3\pi}{4}\right) + \sin\left(\pi + \frac{3\pi}{4}\right)

    =cos3π4sin3π4=cos(ππ4)sin(ππ4)= -\cos\frac{3\pi}{4} - \sin\frac{3\pi}{4} = -\cos\left(\pi - \frac{\pi}{4}\right) -\sin \left(\pi - \frac{\pi}{4}\right)

    =cosπ4sinπ4=1212=0= \cos \frac{\pi}{4} -\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0

    tan7π4+cos7π4=tan(π+3π4)+cos(π+3π4)\tan \frac{7\pi}{4} + \cos \frac{7\pi}{4} = \tan\left(\pi + \frac{3\pi}{4}\right) + \cos \left(\pi + \frac{3\pi}{4}\right)

    =tan3π4+cot3π4=tan(ππ4)+cot(ππ4)= \tan \frac{3\pi}{4} + \cot \frac{3\pi}{4} = \tan\left(\pi - \frac{\pi}{4}\right) + \cot \left(\pi - \frac{\pi}{4}\right)

    =tanπ4tanπ4=2= -\tan \frac{\pi}{4} - \tan \frac{\pi}{4} = -2

  15. cos11π3+sin11π3=cos(2π+π+2π3)+sin(2π+π+2π3)\cos\frac{11\pi}{3} + \sin \frac{11\pi}{3} = \cos\left(2\pi + \pi + \frac{2\pi}{3}\right) + \sin\left(2\pi + \pi + \frac{2\pi}{3}\right)

    =cos(π+2π3)+sin(π+2π3)=cos2π3sin2π3= \cos\left(\pi + \frac{2\pi}{3}\right) + \sin \left(\pi + \frac{2\pi}{3}\right) = -\cos\frac{2\pi}{3} - \sin\frac{2\pi}{3}

    =cos(ππ3)sin(ππ3)= -\cos\left(\pi - \frac{\pi}{3}\right) - \sin\left(\pi - \frac{\pi}{3}\right)

    =cosπ3sinπ3=132=\cos \frac{\pi}{3} -\sin \frac{\pi}{3} = \frac{1 - \sqrt{3}}{2}

    tan11π3+cot11π3=tan(2π+π+2π3)+cot(2π+π+2π3)\tan\frac{11\pi}{3} + \cot\frac{11\pi}{3} = \tan\left(2\pi + \pi + \frac{2\pi}{3}\right) + \cot\left(2\pi + \pi + \frac{2\pi}{3}\right)

    =tan(π+2π3)+cot(π+2π3)= \tan\left(\pi + \frac{2\pi}{3}\right) + \cot\left(\pi + \frac{2\pi}{3}\right)

    =tan2π3+cot2π3=tan(ππ3)+cot(ππ3)= \tan\frac{2\pi}{3} + \cot\frac{2\pi}{3} = \tan\left(\pi - \frac{\pi}{3}\right) + \cot(\pi - \frac{\pi}{3})

    =tanπ3cotπ3=313=43= -\tan\frac{\pi}{3} -\cot\frac{\pi}{3} = -\sqrt{3} - \frac{1}{\sqrt{3}} = - \frac{4}{\sqrt{3}}

  16. sin\sin of an angle is positive in first and second quadrant. Also, sin45=12,\sin 45^\circ = \frac{1}{\sqrt{2}}, therefore the angles will be 4545^\circ and 135.135^\circ.

  17. cos\cos of an angle is positive in second and third quadrant. Also, cos60=12,\cos 60^\circ = \frac{1}{2}, therefore the angles will be 120120^\circ and 240.240^\circ.

  18. tan\tan of an angle is negative in second and fourth quadrant. Also, tan45=1,\tan 45^\circ = 1, therefore the angles will be 135135^\circ and 315.315^\circ.

  19. cot\cot of an angle is negative in second and fourth quadrant. Also, cot30=3,\cot 30^\circ = \sqrt{3}, therefore the angles will be 150150^\circ and 330.330^\circ.

  20. sec\sec of an angle is negative in second and third quadrant. Also, sec30=23,\sec 30^\circ = \frac{2}{\sqrt{3}}, therefore the angles will be 150150^\circ and 210.210^\circ.

  21. cosec\cosec of an angle is negative in third and fourth quadrant. Also, cosec30=2,\cosec 30^\circ = 2, therefore the angles will be 210210^\circ and 330.330^\circ.

  22. sin(65)=sin65=cos(9065)=cos25\sin(-65^\circ) = -\sin 65^\circ = -\cos(90^\circ - 65^\circ) = -\cos 25^\circ

  23. cos(84)=cos84=sin(9084)=sin6\cos(-84^\circ) = \cos 84^\circ = \sin(90^\circ - 84^\circ) = \sin 6^\circ

  24. tan(137)=tan(18043)=tan43\tan(137^\circ) = \tan(180^\circ - 43^\circ) = -\tan 43^\circ

  25. sin(168)=sin(18012)=sin12\sin(168^\circ) = \sin(180^\circ - 12^\circ) = \sin 12^\circ

  26. cos(287)=cos(180+107)=cos107=sin17\cos(287^\circ) = \cos(180 + 107^\circ) = -\cos 107^\circ = \sin 17^\circ

  27. tan(246)=tan(246)=tan(180+66)=tan66=tan(9024)=cot24\tan(-246^\circ) = -\tan(246^\circ) = -\tan(180 + 66^\circ) = -\tan 66^\circ = -\tan(90^\circ - 24^\circ) = -\cot 24^\circ

  28. sin843=sin(2360+123)=sin(123)=sin(90+33)=cos33\sin 843^\circ = \sin(2*360^\circ + 123^\circ) = \sin(123^\circ) = \sin(90^\circ + 33^\circ) = \cos 33^\circ

  29. cos(928)=cos(2360+208)=cos(180+28)=cos28\cos(-928^\circ) = \cos(2*360^\circ + 208^\circ) = \cos(180^\circ + 28^\circ) = -\cos 28^\circ

  30. tan1145=tan(3360+65)=tan(65)=tan(9025)=cot25\tan 1145^\circ = \tan(3*360^\circ + 65^\circ) = \tan(65^\circ) = \tan(90^\circ - 25^\circ) = \cot 25^\circ

  31. cos1410=cos(3603+330)=cos(180+18030)=cos40\cos 1410^\circ = \cos(360*3 + 330^\circ) = \cos(180^ + 180^\circ - 30^\circ) = \cos 40^\circ

  32. cot(1054)=cot(336026)=cot26\cot(-1054^\circ) = -\cot(3*360 - 26^\circ) = \cot 26^\circ

  33. sec1327=sec(3360+247)=sec(180+67)=sec67=sec(9023)=cosec23\sec 1327^\circ = \sec(3*360^\circ + 247^\circ) = \sec(180^\circ + 67^\circ) = -\sec 67^\circ = -\sec(90^\circ - 23^\circ) = -\cosec 23^\circ

  34. cosec(756)=cosec(2360+36)=cosec36\cosec (-756^\circ) = -\cosec(2*360^\circ + 36^\circ) = -\cosec 36^\circ

  35. sin140+cos140=sin(90+50)+cos(18040)=cos50cos40\sin 140^\circ + \cos 140^\circ = \sin(90^\circ + 50^\circ) + \cos(180^\circ - 40^\circ) = \cos 50^\circ - \cos 40^\circ

    cos40>cos50\cos 40^\circ > \cos 50^\circ therefore sign will be negative.

  36. sin278+cos278=sin(180+98)+cos(180+98)\sin 278^\circ + \cos 278^\circ = \sin(180^\circ + 98^\circ) + \cos(180^\circ + 98^\circ)

    =sin(98)cos(98)=cos8+cos82= -\sin(98^\circ) - \cos(98^\circ) = -\cos 8^\circ + \cos 82^\circ

    cos8>cos82\cos 8^\circ > \cos 82^\circ therefore sign will be negative.

  37. sin(356)+cos(356)=sin(180+1804)+cos(180+1804)\sin(-356^\circ) + \cos(-356^\circ) = -\sin(180^\circ + 180^\circ - 4^\circ) + \cos(180^\circ + 180^\circ - 4^\circ)

    sin4+cos4\sin 4^\circ + \cos 4^\circ which will yield a positive sign.

  38. sin(1125)+cos(1125)=sin(3360+45)+cos(3360+445)\sin(-1125^\circ) + \cos(-1125^\circ) = -\sin(3*360^\circ + 45^\circ) + \cos(3*360^\circ + 445^\circ)

    =sin45+cos45=0= -\sin 45^\circ + \cos 45^\circ = 0 which is neither negative nor positive.

  39. sin215cos215=sin(180+35)cos(180+35)\sin 215^\circ - \cos 215^\circ = \sin(180^\circ + 35^\circ) - \cos(180^\circ + 35^\circ)

    =sin35+cos35= -\sin 35^\circ + \cos 35^\circ

    cos35>sin35\because \cos 35^\circ > \sin 35^\circ the sign will be positive.

  40. sin825cos825=sin(2360+105)cos(2360+105)\sin 825^\circ - \cos 825^\circ = \sin(2*360^\circ + 105^\circ) - \cos(2*360 + 105^\circ)

    =cos15+sin15= \cos 15^\circ + \sin 15^\circ for which sign will be positive.

  41. sin(634)cos(634)=sin(360+274)cos(360+274)\sin(-634^\circ) - \cos(-634)^\circ = -\sin (360^\circ + 274^\circ) - \cos (360^\circ + 274^\circ)

    =sin(180+90+4)cos(180+90+4)= -\sin(180^\circ + 90^\circ + 4^\circ) - \cos(180^\circ + 90^\circ + 4^\circ)

    =cos4sin4= \cos 4^\circ - \sin 4^\circ whic will have positive sign.

  42. sin(457)cos(457)=sin(360+90+7)cos(360+90+7)\sin(-457^\circ) - \cos(-457^\circ) = -\sin(360^\circ + 90^\circ + 7^\circ) -\cos(360^\circ + 90^\circ + 7^\circ)

    =cos7+sin7=-\cos 7^\circ + \sin 7^\circ which will have negative sign.

  43. cos135=12\cos 135^\circ = -\frac{1}{\sqrt{2}} then given tanA=12\tan A = -\frac{1}{\sqrt{2}}

    sinA=±13,cosA=±23\sin A = \pm \frac{1}{\sqrt{3}}, \cos A = \pm \frac{\sqrt{2}}{\sqrt{3}}

  44. sin(270+A)=sin(180+90+A)=sin(90+A)=cosA\sin(270^\circ + A) = \sin(180^\circ + 90^\circ + A) = -\sin(90^\circ + A) = -\cos A

    tan(270+A)=tan(180+90+A)=tan(90+A)=cotA\tan(270^\circ + A) = \tan(180^\circ + 90^\circ + A) = \tan(90^\circ + A) = -\cot A

  45. cos(270A)=cos(180+90A)=cos(90A)=sinA\cos(270^\circ - A) = \cos(180^\circ + 90^\circ - A) = -\cos(90^\circ - A) = -\sin A

    cot(270A)=cot(180+90A)=cot(90A)=tanA\cot(270^\circ - A) = \cot(180^\circ + 90^\circ - A) = \cot(90^\circ - A) = \tan A

  46. L.H.S. =cosA+sin(270+A)sin(270A)+cos(180+A)= \cos A + \sin(270^\circ + A) - \sin(270^\circ - A) + \cos(180^\circ + A)

    Using results from previous problems we get

    =cosA+cosA+cosAcosA=0= \cos A + -\cos A + \cos A - \cos A = 0

  47. L.H.S. =sec(270A)sec(90A)tan(270A)tan(90+A)+1= \sec(270^\circ - A)\sec(90^\circ - A) - \tan(270^\circ - A)\tan(90^\circ + A) + 1

    =sec(180+90A)cosecA+tan(180+90A)cotA+1= \sec(180^\circ + 90^\circ - A)\cosec A + \tan(180^\circ + 90^\circ - A)\cot A + 1

    =cosec2A+cot2A+1=1+1=0== -\cosec^2A + \cot^2A + 1 = -1 + 1 = 0 = R.H.S.

  48. L.H.S. =cotA+tan(180+A)+tan(90+A)+tan(360A)= \cot A + \tan(180^\circ + A) + \tan(90^\circ + A) + \tan(360^\circ - A)

    =cotA+tanAcotAtanA=0== \cot A + \tan A - \cot A - \tan A = 0 = R.H.S.

  49. Given, 3tan245sin26012cot230+18sec2453\tan^245^\circ - \sin^260^\circ - \frac{1}{2}\cot^230^\circ + \frac{1}{8}\sec^245^\circ

    =3.12(32)212(3)2+18(2)2= 3.1^2 - \left(\frac{\sqrt{3}}{2}\right)^2 - \frac{1}{2}(\sqrt{3})^2 + \frac{1}{8}(\sqrt{2})^2

    =33432+28=1= 3 - \frac{3}{4} - \frac{3}{2} + \frac{2}{8} = 1

  50. Given, =sin(2π60).tan(2π30).sec(2π+60)tan(π45).sin(π+30).sec(2π45)= \frac{\sin(2\pi - 60^\circ).\tan(2\pi - 30^\circ).\sec(2\pi + 60^\circ)}{\tan(\pi - 45^\circ).\sin(\pi + 30^\circ).\sec(2\pi - 45^\circ)}

    =sin6.tan30.sec60tan45.sin30.sec45= \frac{-\sin 6-^\circ. -\tan 30^\circ.\sec 60^\circ}{-\tan 45^\circ. -\sin 30^\circ.\sec 45^\circ}

    =32.13.21.12.2=2= \frac{\frac{\sqrt{3}}{2}.\frac{1}{\sqrt{3}}.2}{1.\frac{1}{\sqrt{2}}.\sqrt{2}} = \sqrt{2}

  51. L.H.S. =tan1tan2tan89= \tan 1^\circ\tan 2^\circ \ldots \tan 89^\circ

    =(tan1.tan(901).(tan2.tan(902)..(tan44.tan(9044).tan45= (\tan 1^\circ.\tan(90^\circ - 1^\circ).(\tan 2^\circ.\tan(90^\circ - 2^\circ).\ldots.(\tan 44^\circ.\tan(90^\circ - 44^\circ).\tan 45^\circ

    =(tan1.cot1).(tan2.cot2)..(tan44.cot44).1= (\tan 1^\circ.\cot 1^\circ).(\tan 2^\circ.\cot 2^\circ).\ldots.(\tan 44^\circ.\cot 44^\circ).1

    =1.1.1.1[tanθcotθ=1]= 1.1.\ldots 1.1 [\because \tan\theta\cot\theta = 1]

    =1== 1 = R.H.S.

  52. L.H.S. =(sin25+sin285)+(sin210+sin280)++(sin240+sin250)+sin245+sin290=(\sin^25^\circ + \sin^285^\circ) + (\sin^210^\circ + \sin^280^\circ) + \ldots + (\sin^240^\circ + \sin^250^\circ) + \sin^245^\circ + \sin^290^\circ

    =(sin25+cos25)+(sin210+cos210)++(sin240+cos240)+sin245+sin290= (\sin^25^\circ + \cos^25^\circ) + (\sin^210^\circ + \cos^210^\circ) + \ldots + (\sin^240^\circ + \cos^240^\circ) + \sin^245^\circ + \sin^290^\circ

    =1+1+ 8 times+(12)2+1=912== 1 + 1 +~\text{8 times}+ \left(\frac{1}{\sqrt{2}}\right)^2 + 1 = 9\frac{1}{2} = R.H.S.

  53. Given expression can be rewritten as =cos2π16+cos23π16+cos2(π23π16)+cos2(π2π16)= \cos^2 \frac{\pi}{16} + \cos^2 \frac{3\pi}{16} + \cos^2\left(\frac{\pi}{2} - \frac{3\pi}{16}\right) + \cos^2\left(\frac{\pi}{2} - \frac{\pi}{16}\right)

    =cos2π16+cos23π16+sin23π16+sin2π16= \cos^2 \frac{\pi}{16} + \cos^2 \frac{3\pi}{16} + \sin^2\frac{3\pi}{16} + \sin^2\frac{\pi}{16}

    =1+1=2= 1 + 1 = 2

  54. Substituting the values (23)2(2)2+(3)2.12\left(\frac{2}{\sqrt{3}}\right)^2(\sqrt{2})^2 + (\sqrt{3})^2.1^2

    =43.2+3=173= \frac{4}{3}.2 + 3 = \frac{17}{3}

  55. Substituting the values (3)22.122341(2)24.122(\sqrt{3})^2 - 2.\frac{1}{2^2} - \frac{3}{4}\frac{1}{(\sqrt{2})^2} - 4.\frac{1}{2^2}

    =98= \frac{9}{8}

  56. Given expression is sec(2π+120).cosec(2π+210).tan(2π30)sin(2π+240).cos(2π+300).cot(2π+45)\frac{\sec\circ(2\pi + 120^\circ).\cosec(2\pi + 210^\circ).\tan(2\pi - 30^\circ)}{\sin(2\pi + 240^\circ).\cos(2\pi + 300^\circ).\cot(2\pi + 45^\circ)}

    =sec(90+30).cosec(180+30).tan30sin(180+60).cos(36060).cot45= \frac{\sec(90^\circ + 30^\circ).\cosec(180^\circ + 30^\circ).-\tan 30^\circ}{\sin(180^\circ + 60^\circ).\cos(360^\circ - 60^\circ).\cot 45^\circ}

    =cosec30.cosec30.tan30sin60.cos60.cot45= \frac{-\cosec 30^\circ. -\cosec 30^\circ. -\tan 30^\circ}{-\sin 60^\circ. \cos 60^\circ.\cot 45^\circ}

    =2.2.1332.12.1= \frac{2.2.\frac{1}{\sqrt{3}}}{\frac{\sqrt{3}}{2}.\frac{1}{2}.1}

    =163= \frac{16}{3}

  57. L.H.S. cos630+sin630=(32)6+126=2764+164=716\cos^630^\circ + \sin^6 30^\circ = \left(\frac{3}{2}\right)^6 + \frac{1}{2}^6 = \frac{27}{64} + \frac{1}{64} = \frac{7}{16}

    R.H.S. =13sin230cos230=13.122.322=1916=716= 1 - 3\sin^230^\circ\cos^230^\circ = 1 - 3.\frac{1}{2^2}.\frac{3}{2^2} = 1 - \frac{9}{16} = \frac{7}{16}

    Thus, L.H.S. = R.H.S.

  58. L.H.S. =(1+1+2)(1+12)=42=2=cosec2π4= \left(1 + 1 + \sqrt{2}\right)(1 + 1 - \sqrt{2}) = 4 - 2 = 2 = \cosec^2\frac{\pi}{4}

59 and 60 are similar to 52 and 51 respectively and have been left as an exercise.

  1. L.H.S. =sin2π18+sin22π18++sin29π18= \sin^2 \frac{\pi}{18} + \sin^2\frac{2\pi}{18} + \ldots + \sin^2\frac{9\pi}{18}

    sin28π18=sin2(π2π18)=cos2π18\sin^2\frac{8\pi}{18} = \sin^2\left(\frac{\pi}{2} - \frac{\pi}{18}\right) = \cos^2\frac{\pi}{18}

    sin27π18=sin2(π22π18)=cos22π18\sin^2\frac{7\pi}{18} = \sin^2\left(\frac{\pi}{2} - \frac{2\pi}{18}\right) = \cos^2\frac{2\pi}{18}

    Following similarly, the original expression can be written as

    (sin2π18+cos2π18)+(sin22π18+cos22π18)+(sin23π18+cos23π18)+(sin24π18+cos24π18)+sin2π2\left(\sin^2 \frac{\pi}{18} + \cos^2\frac{\pi}{18}\right) + \left(\sin^2 \frac{2\pi}{18} + \cos^2\frac{2\pi}{18}\right) + \left(\sin^2 \frac{3\pi}{18} + \cos^2\frac{3\pi}{18}\right) + \left(\sin^2 \frac{4\pi}{18} + \cos^2\frac{4\pi}{18}\right) + \sin^2 \frac{\pi}{2}

    =5== 5 = R.H.S.

  2. 2nα=π22n\alpha = \frac{\pi}{2}

    L.H.S. =tanαtan2αtan3α..tan(2n2)αtan(2n1)α= \tan\alpha\tan2\alpha\tan3\alpha. \ldots .\tan(2n - 2)\alpha\tan(2n - 1)\alpha

    =tanαtan2αtan3α..cot2α.cotα= \tan\alpha\tan2\alpha\tan3\alpha. \ldots .\cot2\alpha.\cot\alpha

    =1== 1 = R.H.S.