Let us solve these one by one:
cos2A=cos60∘=21
cos2A−sin2A=(23)2−(21)2=43−41=21
2cos2−1=2.(23)2−1=2.43−1=21
sin2A=sin60∘=23
2sinAcosA=2.21.23=23
cos3A=cos90∘=0
4cos3A−3cosA=4.833−323=0
sin3A=sin90∘=1
3sinA−4sin3A=321−4.231=23−21=1
tan2A=tan60∘=3
1−tan2A2tanA=1−312.31=32.23=3
Let us solve these one by one:
sin2A=sin90∘=1
2sinAcosA=2sin45∘cos45∘=2.21.21=1
cos2A=cos90∘=0
1−2sin2A=1−2sin245∘=1−2.(2)21=1−2.21=0
tan2A=tan90∘=∞
1−tan2A2tanA=1−122.1=02=∞
L.H.S. =sin230∘+sin245∘+sin260∘
=221+(2)21+22(3)2=41+21+43=23= R.H.S.
L.H.S. =tan230∘+tan245∘+tan260∘
=(3)21+1+(3)2=31+1+3=431= R.H.S.
L.H.S. =sin30∘cos60∘+sin60∘cos30∘
=2121+2323=41+43=1= R.H.S.
L.H.S. =cos45∘cos60∘−sin45∘sin60∘
=2121−2123=221−223
=221−3=−223−1= R.H.S.
L.H.S. =cosec245∘.sec230∘.sin290∘.cos60∘
=(2)2.(3)222.12.21=2.34.1.21=34= R.H.S.
L.H.S. =4cot245∘−sec260∘+sin230∘
=4.12−22+221=4−4+41=41= R.H.S.
L.H.S. =sin420∘cos390∘+cos(−300∘)sin(−330∘)
=sin(360∘+60∘)cos(360∘+30∘)+cos60∘sin30∘
=sin60cos30∘+cos60∘sin30∘=23.33+21.21=43+41=1= R.H.S.
L.H.S. =cos570∘sin510∘−sin330∘cos390∘
=cos(360∘+210∘)sin(360∘+150∘)−sin(360∘−30∘)cos(360∘+30∘)
=cos(180∘+30∘)sin(180∘−30∘)+sin30∘cos30∘
=−cos30∘sin30∘+sin30∘cos30∘
=0= R.H.S.
cos3π−sin3π=21−23=21−3
tan3π+cot3π=3.+31=34
cos32π−sin32π=cos(π−3π))−sin(π−3π)
=−cos3π−sin3π=−21−23=−21+3
tan32π+cot32π=tan(π−3π)+cot(π−3π)
=−tan3π.−cot3π=−3−31=−34
cos45π−sin45π=cos(π+4π)+sin(π+4π)
=−cos4π−sin4π=−21−21=−2
tan45π+cot45π=tan(π+4π)+cot(π+4π)
=tan4π+cot4π=1+1=2
cos47π+cos47π=cos(π+43π)+sin(π+43π)
=−cos43π−sin43π=−cos(π−4π)−sin(π−4π)
=cos4π−sin4π=21−21=0
tan47π+cos47π=tan(π+43π)+cos(π+43π)
=tan43π+cot43π=tan(π−4π)+cot(π−4π)
=−tan4π−tan4π=−2
cos311π+sin311π=cos(2π+π+32π)+sin(2π+π+32π)
=cos(π+32π)+sin(π+32π)=−cos32π−sin32π
=−cos(π−3π)−sin(π−3π)
=cos3π−sin3π=21−3
tan311π+cot311π=tan(2π+π+32π)+cot(2π+π+32π)
=tan(π+32π)+cot(π+32π)
=tan32π+cot32π=tan(π−3π)+cot(π−3π)
=−tan3π−cot3π=−3−31=−34
sin of an angle is positive in first and second quadrant. Also, sin45∘=21, therefore
the angles will be 45∘ and 135∘.
cos of an angle is positive in second and third quadrant. Also, cos60∘=21, therefore the
angles will be 120∘ and 240∘.
tan of an angle is negative in second and fourth quadrant. Also, tan45∘=1, therefore the angles will
be 135∘ and 315∘.
cot of an angle is negative in second and fourth quadrant. Also, cot30∘=3, therefore the
angles will be 150∘ and 330∘.
sec of an angle is negative in second and third quadrant. Also, sec30∘=32, therefore
the angles will be 150∘ and 210∘.
cosec of an angle is negative in third and fourth quadrant. Also, cosec30∘=2, therefore the angles
will be 210∘ and 330∘.
sin(−65∘)=−sin65∘=−cos(90∘−65∘)=−cos25∘
cos(−84∘)=cos84∘=sin(90∘−84∘)=sin6∘
tan(137∘)=tan(180∘−43∘)=−tan43∘
sin(168∘)=sin(180∘−12∘)=sin12∘
cos(287∘)=cos(180+107∘)=−cos107∘=sin17∘
tan(−246∘)=−tan(246∘)=−tan(180+66∘)=−tan66∘=−tan(90∘−24∘)=−cot24∘
sin843∘=sin(2∗360∘+123∘)=sin(123∘)=sin(90∘+33∘)=cos33∘
cos(−928∘)=cos(2∗360∘+208∘)=cos(180∘+28∘)=−cos28∘
tan1145∘=tan(3∗360∘+65∘)=tan(65∘)=tan(90∘−25∘)=cot25∘
cos1410∘=cos(360∗3+330∘)=cos(180+180∘−30∘)=cos40∘
cot(−1054∘)=−cot(3∗360−26∘)=cot26∘
sec1327∘=sec(3∗360∘+247∘)=sec(180∘+67∘)=−sec67∘=−sec(90∘−23∘)=−cosec23∘
cosec(−756∘)=−cosec(2∗360∘+36∘)=−cosec36∘
sin140∘+cos140∘=sin(90∘+50∘)+cos(180∘−40∘)=cos50∘−cos40∘
cos40∘>cos50∘ therefore sign will be negative.
sin278∘+cos278∘=sin(180∘+98∘)+cos(180∘+98∘)
=−sin(98∘)−cos(98∘)=−cos8∘+cos82∘
cos8∘>cos82∘ therefore sign will be negative.
sin(−356∘)+cos(−356∘)=−sin(180∘+180∘−4∘)+cos(180∘+180∘−4∘)
sin4∘+cos4∘ which will yield a positive sign.
sin(−1125∘)+cos(−1125∘)=−sin(3∗360∘+45∘)+cos(3∗360∘+445∘)
=−sin45∘+cos45∘=0 which is neither negative nor positive.
sin215∘−cos215∘=sin(180∘+35∘)−cos(180∘+35∘)
=−sin35∘+cos35∘
∵cos35∘>sin35∘ the sign will be positive.
sin825∘−cos825∘=sin(2∗360∘+105∘)−cos(2∗360+105∘)
=cos15∘+sin15∘ for which sign will be positive.
sin(−634∘)−cos(−634)∘=−sin(360∘+274∘)−cos(360∘+274∘)
=−sin(180∘+90∘+4∘)−cos(180∘+90∘+4∘)
=cos4∘−sin4∘ whic will have positive sign.
sin(−457∘)−cos(−457∘)=−sin(360∘+90∘+7∘)−cos(360∘+90∘+7∘)
=−cos7∘+sin7∘ which will have negative sign.
cos135∘=−21 then given tanA=−21
sinA=±31,cosA=±32
sin(270∘+A)=sin(180∘+90∘+A)=−sin(90∘+A)=−cosA
tan(270∘+A)=tan(180∘+90∘+A)=tan(90∘+A)=−cotA
cos(270∘−A)=cos(180∘+90∘−A)=−cos(90∘−A)=−sinA
cot(270∘−A)=cot(180∘+90∘−A)=cot(90∘−A)=tanA
L.H.S. =cosA+sin(270∘+A)−sin(270∘−A)+cos(180∘+A)
Using results from previous problems we get
=cosA+−cosA+cosA−cosA=0
L.H.S. =sec(270∘−A)sec(90∘−A)−tan(270∘−A)tan(90∘+A)+1
=sec(180∘+90∘−A)cosecA+tan(180∘+90∘−A)cotA+1
=−cosec2A+cot2A+1=−1+1=0= R.H.S.
L.H.S. =cotA+tan(180∘+A)+tan(90∘+A)+tan(360∘−A)
=cotA+tanA−cotA−tanA=0= R.H.S.
Given, 3tan245∘−sin260∘−21cot230∘+81sec245∘
=3.12−(23)2−21(3)2+81(2)2
=3−43−23+82=1
Given, =tan(π−45∘).sin(π+30∘).sec(2π−45∘)sin(2π−60∘).tan(2π−30∘).sec(2π+60∘)
=−tan45∘.−sin30∘.sec45∘−sin6−∘.−tan30∘.sec60∘
=1.21.223.31.2=2
L.H.S. =tan1∘tan2∘…tan89∘
=(tan1∘.tan(90∘−1∘).(tan2∘.tan(90∘−2∘).….(tan44∘.tan(90∘−44∘).tan45∘
=(tan1∘.cot1∘).(tan2∘.cot2∘).….(tan44∘.cot44∘).1
=1.1.…1.1[∵tanθcotθ=1]
=1= R.H.S.
L.H.S. =(sin25∘+sin285∘)+(sin210∘+sin280∘)+…+(sin240∘+sin250∘)+sin245∘+sin290∘
=(sin25∘+cos25∘)+(sin210∘+cos210∘)+…+(sin240∘+cos240∘)+sin245∘+sin290∘
=1+1+ 8 times+(21)2+1=921= R.H.S.
Given expression can be rewritten as =cos216π+cos2163π+cos2(2π−163π)+cos2(2π−16π)
=cos216π+cos2163π+sin2163π+sin216π
=1+1=2
Substituting the values (32)2(2)2+(3)2.12
=34.2+3=317
Substituting the values (3)2−2.221−43(2)21−4.221
=89
Given expression is sin(2π+240∘).cos(2π+300∘).cot(2π+45∘)sec∘(2π+120∘).cosec(2π+210∘).tan(2π−30∘)
=sin(180∘+60∘).cos(360∘−60∘).cot45∘sec(90∘+30∘).cosec(180∘+30∘).−tan30∘
=−sin60∘.cos60∘.cot45∘−cosec30∘.−cosec30∘.−tan30∘
=23.21.12.2.31
=316
L.H.S. cos630∘+sin630∘=(23)6+216=6427+641=167
R.H.S. =1−3sin230∘cos230∘=1−3.221.223=1−169=167
Thus, L.H.S. = R.H.S.
L.H.S. =(1+1+2)(1+1−2)=4−2=2=cosec24π
59 and 60 are similar to 52 and 51 respectively and have been left as an exercise.