Go through the list of relationship between trigonometrical ratios as the problems are centered around those.
L.H.S. =1+cosA1−cosA
Multiplying and dividing with 1−cosA, we get
=1−cos2A(1−cosA)2
=(sinA1−cosA)2
=sinA1−cosA=cosecA−cotA= R.H.S.
L.H.S. 1+tan2A+1+cot2A [∵sec2A=1+tan2A and cosec2A=1+cot2A ]
=tan2A+2tanAcotA+cot2A [tanAcotA=1 ]
=(tanA+cotA)2= R.H.S.
L.H.S =(sinA1−sin2A)(cosA1−cos2A)(sinAcosAsin2A+cos2A)
=sinAcos2AcosAsin2AsinAcosA1=1
L.H.S. =cos4A−sin4A+1=(cos2A+sin2A)(cos2A−sin2A)+1
=cos2A−sin2A+1=2cos2A
L.H.S. =(sinA+cosA)(1−sinAcosA)=(sinA+cosA)(sin2A+cos2A−sinAcosA)
=sin3A+cos3A= R.H.S.
L.H.S =1+cosAsinA+sinA1+cosA=sinA(1+cosA)sin2A+(1+cosA)2
=sinA(1+cosA)sin2A+1+2cosA+cos2A=(sinA)(1+cosA))1+1+2cosA
=sinA2=2cosecA= R.H.S.
L.H.S. =sin6A−cos6A=(sin2A+cos2A)3−3cos4Asin2A−3cos2Asin4A
=1−3sin2Acos2A(cos2A+sin2A)=1−3sin2Acos2A= R.H.S.
L.H.S. =1+sinA1−sinA
Multiplying and dividing with 1−sinA, we get
=1−sin2A(1−sinA)2=cos2A(1−sinA)2=(cosA1−sinA)2
=cosA1−sinA=secA−tanA
L.H.S. =cosecA−1cosecA+cosecA+1cosecA=sinA1−1sinA1+sinA1+1sinA1
=1−sinA1+1+sinA1=(1−sinA)(1+sinA)1=cos2A1=sec2A=
R.H.S.
L.H.S. =tanA+cotAcosecA=cosAsinA+sinAcosAsinA1
=sinAcosAsin2A+cos2AsinA1=sinAcosA1sinA1=cosA= R.H.S.
L.H.S. =(secA+cosA)(secA−cosA)=sec2A−cos2A=1+tan2A−1+sin2A=tan2A+sin2A=
R.H.S.
L.H.S. =tanA+cotA1=cosAsinA+sinAcosA1=sinAcosAsin2A+cos2A1=sinAcosA= R.H.S.
L.H.S =1+tanA1−tanA=1+cotA11−cotA1=cotA+1cotA−1= R.H.S.
L.H.S. =1+cot2A1+tan2A=1+sinAcos2A1+cos2Asin2A
=sin2Asin2A+cos2Acos2Acos2A+sin2A=cos2Asin2A= R.H.S.
L.H.S. =secA+tanAsecA−tanA
Multiplying and dividing with secA−tanA, we get
sec2A−tan2A(secA−tanA)2=sec2A−2tanAsecA+tanA=1+tan2A−2tanAsecA+tan2A
=1−2tanAsecA+2tan2A= R.H.S.
L.H.S. =secA−tanA1
Multiplying and dividing with secA+tanA, we get
=sec2A=tan2AsecA+tanA=secA+tanA= R.H.S.
L.H.S. =1−cotAtanA+1−tanAcotA
=1−sinAcosAcosAsinA+1−cosAsinAsinAcosA
=cosA(sinA−cosA)sin2A+sinA(cosA−sinA)cos2A
=sinAcosA(sinA−cosA)sin3A−cos3A=sinAcosAsin2A+cos2A+sinAcosA
=sinAcosA1+sinAcosA=1+cosecAsecA= R.H.S.
L.H.S. =1−tanAcosA+1−cotAsinA=1−cosAsinAcosA+1−sinAcosAsinA
=cosA−sinAcos2A+sinA−cosAsin2A=cosA−sinAcos2A−sin2A
=cosA+sinA= R.H.S.
L.H.S. =(sinA+cosA)(tanA+cotA)=(sinA+cosA)(cosAsinA+sinAcosA)
=(sinA+cosA)sinAcosAsin2A+cos2A=sinAcosAsinA+cosA=secA+cosecA=
R.H.S.
L.H.S. =sec4A−sec2A=(1+tan2A)−1−tan2A=1+2tan2A+tan4A−1−tan2A=tan4A+tan2A=
R.H.S.
L.H.S. =cot4A+cot2A=(cosec2A−1)1+cosec2A−1=cosec4A−2cosec2A+1+cosec2A−1=cosec4A−cosec2A= R.H.S.
L.H.S. =cosec2A−1=cot2A=cotA=sinAcosA=cosAcosecA= R.H.S.
L.H.S. =sec2Acosec2A=(1+tan2A)(1+cot2A)=1+tan2A+cot2A+tan2Acos2A=2+tan2A+cot2A= R.H.S.
L.H.S. =tan2A−sin2A=cos2Asin2A−sin2A=cos2Asin2A−sin2Acos2A=sin2A(1−cos2A)sec2A=sin4Asec2A= R.H.S.
L.H.S. =(1+cotA−cosecA)(1+tanA+secA)=(1+sinAcosA−sinA1)(1+cosAsinA+cosA1)
=sinAcosA(sinA+cosA−1)(sinA+cosA+1)=sinAcosA(sinA+cosA)2−1
=sinAcosAsin2A+cos2A+sinAcosA−1=sinAcosA1+2sinAcosA−1=2= R.H.S.
L.H.S. =cotA+cosAcotAcosA=sinAcosA+cosAsinAcos2A
=sinAcos2AcosA(1+sinA)sinA=1+sinAcosA
Proceeding in same way for R.H.S. we obtain cosA1−sinA
1+sinAcosA=1−sin2AcosA(1−sinA)=cosA1−sinA= R.H.S.
L.H.S. =cotB+tanAcotA+tanB=tanB1+tanAtanA1+tanB
tanB1+tanAtanBtanA1+tanAtanB=tanAtanB=cotAtanB= R.H.S.
L.H.S. =(sec2A−cos2A1+cosec2A−sin2A1)cos2Asin2A
=(cos2A1−cos2A1+sin2A1−sin2A1)cos2Asin2A
=(1−cos4Acos2A+1−sin4sin2A)cos2Asin2A
=((1−cos2A)(1+cos2A)cos2A+(1−sin2A)(1+sin2A)sin2A)cos2Asin2A
=(sin2A(1+cos2A)cos2A+cos2A(1+sin2A)sin2A)cos2Asin2A
=(sin2Acos2A(1+cos2A))(1+sin2A)cos4A(1+sin2A)+sin4A(1+cos2A))cos2Asin2A
=((1+cos2A)(1+sin2A)cos4A+sin4A+cos2Asin2A(cos2A+sin2A))
=(1+sin2A+cos2A+sin2Acos2A(cos2A+sin2A)2−cos2Asin2A)
=2+sin2Acos2A1−sin2Acos2A= R.H.S.
L.H.S. =sin8A−cos8A=(sin4A−cos4A)(sin4A+cos4A)
=(sin2A+cos2A)(sin2A−cos2A)((sin2A+cos2A)2−2sin2Acos2A)
=(sin2A−cos2A)(1−2sin2Acos2A)= R.H.S.
L.H.S. =cosA+sinAcosAcosecA−sinAsecA=cosA+sinAsinAcosA−cosAsinA
=sinAcosA(cosA+sinA)cos2A−sin2A=sinAcosAcosAsinA=cosecA−secA=
R.H.S.
Given, cosecA−cotA1−sinA1=sinA1−cosecA+cotA1
Therefore alternatively we can prove that cosecA−cotA1+cosecA+cotA1=sinA2
L.H.S. =sinA1−sinAcosA1+sinA1+sinAcosA1
=1−cosAsinA−1+cosAsinA=1−cos2AsinA(1+cosA+1−cosA)=sin2A2sinA=sinA2= R.H.S.
L.H.S. =tanA−secA+1tanA+secA−1=cosAsinA+cosA−1)cosAsinA+1−cosA
=sinA+cosA−11+sinA−cosA=(sinA+cosA−1)2(1+sinA−cosA)(sinA+cosA−1)
Solving this yields =cosA1+sinA= R.H.S.
L.H.S. =(tanA+cosecB)2−(cotB−secA)2=tan2A+cosec2B+2tanAcosecB−cot2B−sec2A+2secAcotB
=(cosec2B−cot2B)−(sec2A−tan2A)+2tanAcotB(cotBcosecB+tanAsecA)
=1−1+2tanAcotB(secB+cosecA)= R.H.S.
L.H.S. =2sec2A−sec4A−2cosec2A+cosec4A=2(1+tan2A)−(1+tan2A)2−2(1+cot2A)+(1+cot2A)2
=2+2tan2A−1−2tan2A+tan4A−2−2cot2A+1+2cot2A+cot4A=cot4A−tan4A= R.H.S.
L.H.S. =(sinA+cosecA)2+(cosA+secA)2=sin2A+cosec2A+2sinAcosecA+cos2A+sec2A+2secAcosecA
=(sin2A+cos2A)+4+cosec2A+sec2A=1+4+1+cot2A+1+tan2A=cot2A+tan2A+7= R.H.S.
L.H.S =(cosecA+cotA)(1−sinA)−(secA+tanA)(1−cosA)
=(sinA1+sinAcosA)(1−sinA)−(cosA1+cosAsinA)(1−cosA)
=sinA(1+cosA)(1−sinA)−cosA(1+sinA)(1−cosA)
=sinAcosAcosA(1+cosA−sinA−cosAsinA)−sinA(1+sinA−cosA−sinAcosA)
=sinAcosA(1−sinAcosA)(cosA−sinA)+(cosA−sinA)(cosA+sinA)
=sinAcosA(cosA−sinA)(1−cosAsinA+cosA+sinA)
=(sinAcosA(cosA−sinA))(2−1−cosAsinA+cosA+sinA)
=(cosecA−secA)(2−(1−cosA)(1−sinA))= R.H.S.
L.H.S =(1+cotA+tanA)(sinA−cosA)=(1+secAcosecA+cosecAsecA)(cosecA1−secA1)
=(secAcosecAsecAcosecA+secA∣cosecA)(secAcosecasecA−cosecA)
=sec2Acosec2Asec3A−cosec3A=cosec2AsecA−sec2AcosecA= R.H.S.
Given, secA−tanA1−cosA1=cosA1−secA+tanA1
So alternatively we can prove that secA−tanA1+secA+tanA1=cosA2
L.H.S. =sec2A−tan2AsecA+tanA+secA−tanA=2secA=cosA2= R.H.S.
L.H.S. =3(sinA−cosA)4+4(sin6A+cos6A)+6(sinA+cosA)2
=3[(sinA−cosA)2]2+4[(sin2A)3+(cos2A)3]+6(sin2A+cos2A+2cosAsinA)
=3[(sin2A+cos2A−2sinAcosA)]2+4(sin2A+cos2A)(sin4A+cos4A−sin2Acos2A)+6(1+2cosAsinA)
=3(1−2sinAcosA)2+4(sin4A+cos4A−sin2Acos2A)+6(1+2cosAsinA)
=3(1+4sin2Acos2A−4cosAsinA)+4[(sin2A+cos2A)2−2sin2Acos2A−sin2Acos2A]+6(1+2sinAcosA)
=3+12sin2Acos2A−12cosAsinA+4(1−3sin2Acos2A)+6+12sinAcosA
=13= R.H.S.
L.H.S. =1−cosA1+cosA
Multiplying and dividing with 1+cosA, we get
=1−cos2A(1+cosA)2=(sinA1+cosA)2=cosecA+cotA=
R.H.S.
L.H.S. =1+sinAcosA+1−sinAcosA
1−sin2AcosA(1−sinA)+cosA(1+sinA)
=cos2A2cosA=2secA= R.H.S.
L.H.S. =secA−1tanA+secA+1tanA
=(sec2A−1)tanAsecA+tanA+tanAsecA−tanA
=tan2A2tanAsecA=2cosecA= R.H.S.
L.H.S. =1−sinA1−1+sinA1
=1−sin2A1+sinA−1+sinA=cos2A2sinA=2secAtanA= R.H.S.
L.H.S. =1+cot2A1+tan2A=1+sin2Acos2A1+cos2Asin2A
=sin2Asin2A+cos2Acos2Asin2A+cos2A=cos2Asin2A=tan2A
R.H.S. =(1−cotA1−tanA)2=(1−sinAcosA1−cosAsinA)
=(sinAsinA−cosAcosAcosA−sinA)2
=cos2Asin2A=tan2A
Hence, L.H.S. = R.H.S.
L.H.S. =1+cos2A2tan2A=1+cos4A2sin2A=cos4Acos4A+2sin2A
=cos4A(1−sin2A)2+2sin2A=cos4A1−2sin2A+sin4A+2sin2A
=tan4A+sec4A= R.H.S.
L.H.S. =(1−sinA−cosA)2=1−2cosA−2sinA+2sinAcosA+sin2A+cos2A
=2−2cosA−2sinA+2sinAcosA=2(1−cosA)(1−sinA)= R.H.S.
=cotA−cosecA+1cotA+cosecA−1
=cosA+sinA−1cosA+1−sinA
Multiplying and dividing with cosA−(1−sinA), we get
=cos2A+sin2A+1−2cosA−2sinA+2sinAcosAcos2A−1+2sinA−sin2A
=2(1−cosA)(1−sinA)2sinA−2sin2A=1−cosAsinA
Multiplyig numerator and denominator with 1+cosA, we get
=1−cos2AsinA(1+cosA)=sinA1+cosA= R.H.S.
L.H.S. =(sinA+secA)2+(cosA+cosecA)2
=(cosAsinAcosA+1)2+(sinAcosAsinA+1)2
=(1+sinAcosA)2(cos2A1+sin2A1)
=(1+sinAcosA)2(sin2Acos2Asin2A+cos2A)
=(sinAcosA1+sinAcosA)2=(1+secAcosecA)2= R.H.S.
L.H.S. =(1+tanA)22sinAtanA(1−tanA)+2sinAsec2A
=(1+tanA)22sinA(tanA−tan2A+sec2A)=(1+tanA)22sinA(1+tanA)
=1+tanA2sinA= R.H.S.
Given, 2sinA=2−cosA
cosA=2−2sinA, squaring both sides we, get cos2A=4−8sinA+4sin2A
1−sin2A=4−8sinA+4sin2A⇒5sin2A−8sinA+3=0
5sin2A−5sinA−3sinA+3=0⇒sinA=1,53
Given 8sinA=4+cosA⇒8sinA−4=cosA
Squaring both sides, we get
64sin2A−64sinA+16=cos2A=1−sin2A
65sin2A−64sinA+15=0
65sin2A−39sinA−25sinA+15=0
sinA=53,135
Given, tanA+secA=1.5
⇒1+sinA=1.5cosA⇒2+2sinA=3cosA
Squaring both sides, we get
4+8sinA+4sin2A=9−9sin2A
13sin2A+8sinA−5=0
sinA=−1,135
Given, cotA+cosecA=5⇒1+cosA=5sinA
Squarig both sides, we get
1+2cosA+cos2A=25sin2A=25(1−cos2A)
26cos2A+2cosA−24=0
26cos2A+26cosA−24cosA−24=0
cosA=−1,1312
3sec4A+8=10sec2A⇒3(sec2A)2+8=10(1+tan2A)
⇒3(1+tan2A)2+8=10+10tan2A
3+6tan2A+3tan4A+8=10+10tan2A
3tan4A−4tan2A+1=0
tanA=±1,±31
Given, tan2A+secA=5⇒sec2A−1+secA=5
sec2A+secA−6=0
secA=−3,2⇒cosA=−31,21
Given tanA+cotA=2⇒tanA+tanA1=2
tan2A−2tanA+1=0
tanA=1⇒sinA=21
Given, sec2A=2+2tanA⇒tan2A+1=2+2tanA
tan2A−2tanA−1=0
tanA=22±4+4=1±2
Given, tanA=2x+12x(x+1)
sinA=[2x(x+1)]2+(2x+1)22x(x+1)
cosA=[2x(x+1)]2+(2x+1)22x+1
Given, 3sinA+5cosA=5, let 5sinA−3cosA=x
Squaring and adding, we get
9sin2A+25cos2A+30sinAcosA+25sin2A+9cos2A−30sinAcosA=25+x2
9(sin2A+cos2A)+25(cos2A+sin2A)=25+x2
34=25+x2⇒x2=9⇒x=±3
Given, secA+tanA=secA−tanA
Multiplying both sides with secA+tanA, we get
(secA+tanA)2=sec2A−tan2A=1
secA+tanA=±1
We can prove that secA−tanA to be ±1 by multiplying given equation with secA−tanA
Given, cos2Bcos4A+sin2Bsin4A=1=sin2A+cos2A
⇒cos2Bcos4A−cos2A=sin2A−sin2Bsin4A=0
⇒cos2Bcos2A(cos2A−cos2B)=sin2Bsin2A(sin2B−sin2A)
⇒cos2Bcos2A(cos2A−cos2B)=sin2Bsin2A(1−cos2B−1+cos2A)
⇒(cos2A−cos2B)(cos2Bcos2A−sin2Bsin2A)=0
When cos2A−cos2B=0,cos2A=cos2B
When cos2Bcos2A−sin2Bsin2A=0
cos2Asin2B=sin2Acos2B⇒cos2A(1−cos2B)=(1−cos2A)cos2B
cos2A=cos2B⇒sin2A=sin2B
L.H.S. =sin4A+sin4B=(sin2A−sin2B)2+2sin2Asin2B=2sin2Asin2B= R.H.S.
L.H.S. =cos2Acos4B+sin2Asin4B
=cos2Bcos4B+sin2Bsin4B=cos2B+sin2B=1= R.H.S.
Given, cosA+sinA=2cosA
Squaring both sides
1+2sinAcosA=2cos2A
2−2cos2A=2sin2A=1−2sinAcosA=sin2A+cos2A−2sinAcosA=(cosA−sinA)2
cosA−sinA=±2sinA
Given, acosA−bsinA=c, and let asinA+bcosA=x
Squaring and adding, we get
⇒a2cos2A+b2sin2A−2abcosAsinA+a2sin2A+b2cos2A+2absinAcosA=c2+x2
⇒a2(cos2A+sin2A)+b2(sin2A+cos2A)=c2+x2
⇒a2+b2=c2+x2⇒x=±a2+b2−c2
Given, 1−sinA=1+sinA
Multiplying both sides by 1−sinA, we get
(1−sinA)2=1−sin2A=cos2A
1−sinA=±cosA
Similarly if we multiply with 1+sin we can prove that
1+sinA=±cosA
Let us solve these one by one:
Given, sin4A+sin2A=1⇒sin4A=1−sin2A=cos2
cos4Asin4A=sec2A
tan4A1=cos2A
Also from, sin4A=cos2A⇒tan2A=cosec2A⇒tan2A1=sin2A
⇒tan4A1+tan2A1=sin2A+cos2A=1
Given, sin4A+sin2A=1⇒sin4A=1−sin2A=cos2A
⇒cos2Asin2A=sin2A1⇒tan2A=cosec2A
tan2A=1+cot2A
Multiplying both sides with tan2A, we get
tan4A=tan2A+1
tan4A−tan2A=1
Given, cos2−sin2A=tan2B⇒cos2A+sin2Acos2A−sin2A=tan2B
Dividing both numerator and denominator of L.H.S. with cos2A, we get
1+tan2A1−tan2A=tan2B
1−tan2A−tan2B−tan2Atan2B=0
1−tan2B=tan2A(1+tan2B)⇒1+tan2B1−tan2B=tan2A
cos2B−sin2B=tan2A⇒2cos2B−1=tan2A
We will prove this by induction. Let sinA+cosecA=2, thus it is true for n=1
Squaring both sides sin2A+cosec2A+2sinAcosecA=22⇒sin2A+cosec2A=2
Thus, it is true for n=2 as well. Let it be true for n=m−1 and n=m
sinmA+cosecmA=2
Multiplying both sides with sinA+cosecA, we get
sinm+1A+cosecm+1A+sinmAcosecA+cosecmAsinA=22
sinm+1A+cosecm+1A+sinm−1A+cosecm−1A=4
sinm+1A+cosecm+1=4−2=2
Thus, we have proven it by induction.
L.H.S. =secA+tan3AcosecA=secA(1+tan3AsecAcosecA)
=secA(1+tan3Acota)=secA(1+tan2A)=sec3A=(1+1−e2)23=(2−e2)23
Cross multiplying given equations, we have
br−qcsecA=pc−qrtanA=qa−pb1
∴sec2A−tan2A=1,(aq−pbbr−qc)2−(aq−pbpc−qa)2=1
(br−qa)2−(pc−ar)2=(qa−pb)2
Given, cosecA−sinA=m⇒sinA1−sinA=m
⇒sinA1−sin2A=m⇒sinAcos2A=m
Also given, secA−cosA=n⇒cosA1−cosA=n
⇒cosA1−cos2A=n⇒cosAsin2A=n
We have sinA=mcos2A, putting this in derived equation
cos3A=m2n
∴sinA=m(m2n)32=(mn2)31
Thus, sin2A+cos2A=1 gives us (m2n)32+(mn2)32=1
Given, sec2A=(x+y)24xy
∵sec2A≥1∴(x+y)24xy≥1
⇒(x+y)2≤4xy⇒(x−y)2≤0
But for real x and y,(x−y)2≮0
∴(x−y)2=0∴x−y
Also, x+y=0⇒x=0,y=0
Given, sinA=x+x1, squaring we get
sin2A=x2+x21+2≥2
which is not possible since sinA≤1
Given, secA−tanA=p
⇒1−sinA=pcosA
Squaring, we obtain
1+sin2A−2sinA=p2cos2A=p2(1−sin2A)
(1+p)sin2A−2sinA+1−p2=0
sinA=1+p21±p2
Now tan and secA can be easily found.
secA+tanA=4p4p2+1±sec2A−1
=4p±(16p2(4p2+1)2−1)
=2p or 2p1
Given, sinBsinA=p,cosBcosA=q
Squaring, we get
sin2Bsin2A=p2,cos2Bcos2A=q2
sin2Bsin2A−sin2B=p2−1,cos2Bcos2B−cos2A=1−q2
sin2Bsin2A−sin2B=p2−1,cos2Bsin2A−sin2B=1−q2
Dividing, we obtain
tan2B=±p2−11−q2
Dividing original equations
tanBtanA=±qpp2−11−q2
sinA=2sinB,cosA.sinBsinA.cosB=3
Substituting for sinA
1−2sin2AsinB2sinBcosB=3
Squaring, we get
2cos2A=3(1−2sin2A)⇒4sin2A−1=0
⇒sinA=±21,⇒A=±45∘
Thus, B=±30∘
Given, tanA+cotA=2,1+tan2A=2tanA⇒(1−tanA)2=0
tanA=1⇒sinA=±21
m2−n2=(tanA+sinA)2−(tanA−sinA)2=4tanAsinA
4mn=4tan2A−sin2A=4cos2Asin2A−sin2A
=4cos2Asin2A(1−cos2A)=4cos2Asin4A
=4tanAsinA
m2−1=2sinAcosA⇒n(m2−1)=2sinAcosA(secA+cosecA)
=2sinA+2cosA=2m
Given, xsin3A+ycos3A=sinAcosA
(xsinA)sin2A+(ycosA)cos2A=sinAcosA
Frpm other equation xsinA=ycosA, substituting this in above equation
(xsinA)sin2A+(xsinA)cos2a=sinAcosA
xsinA=sinAcosA
x=cosA∴y=sinA
Thus, x2+y2=1
Given, sin2A=4xy(x+y)2
sin2A≤1⇒(x+y)2≤4xy⇒(x−y)2≤0
But for real x and y (x−y)2≮0
⇒x=y
Also, xy=0,x,y=0